Towards a unified model of naive T cell dynamics across the lifespan

  1. Sanket Rane
  2. Thea Hogan
  3. Edward Lee
  4. Benedict Seddon  Is a corresponding author
  5. Andrew J Yates  Is a corresponding author
  1. Columbia University, United States
  2. University College London, United Kingdom
  3. Yale University, United States

Abstract

Naive CD4 and CD8 T cells are cornerstones of adaptive immunity, but the dynamics of their establishment early in life and how their kinetics change as they mature following release from the thymus are poorly understood. Further, due to the diverse signals implicated in naive T cell survival, it has been a long-held and conceptually attractive view that they are sustained by active homeostatic control as thymic activity wanes. Here we employ multiple experimental systems to identify a unified model of naive CD4 and CD8 T cell population dynamics in mice, across their lifespan. We infer that both subsets divide rarely and progressively increase their survival capacity with cell age. Strikingly, this simple model is able to describe naive CD4 T cell dynamics throughout life. In contrast, we find that newly generated naive CD8 T cells are lost more rapidly during the first 3-4 weeks of life, likely due to increased recruitment into memory. We find no evidence for elevated division rates in neonates, or for feedback regulation of naive T cell numbers at any age. We show how confronting mathematical models with diverse datasets can reveal a quantitative and remarkably simple picture of naive T cell dynamics in mice from birth into old age.

Data availability

All code and data used in this study are available at https://github.com/sanketrane/T_cell_dynamics_birth-death

Article and author information

Author details

  1. Sanket Rane

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thea Hogan

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward Lee

    Department of Laboratory Medicine, Yale University, Newhaven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benedict Seddon

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    For correspondence
    benedict.seddon@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4352-3373
  5. Andrew J Yates

    Department of Pathology and Cell Biology, Columbia University, New York, United States
    For correspondence
    andrew.yates@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4606-4483

Funding

National Institutes of Health (R01AI093870)

  • Andrew J Yates

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to UK home office regulations (licence PPL PP2330953) and institutional animal care and use committee (IACUC) protocols at University College London

Reviewing Editor

  1. Gabrielle T Belz, The University of Queensland, Australia

Publication history

  1. Received: February 25, 2022
  2. Accepted: June 8, 2022
  3. Accepted Manuscript published: June 9, 2022 (version 1)
  4. Accepted Manuscript updated: June 10, 2022 (version 2)

Copyright

© 2022, Rane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 227
    Page views
  • 129
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanket Rane
  2. Thea Hogan
  3. Edward Lee
  4. Benedict Seddon
  5. Andrew J Yates
(2022)
Towards a unified model of naive T cell dynamics across the lifespan
eLife 11:e78168.
https://doi.org/10.7554/eLife.78168

Further reading

    1. Computational and Systems Biology
    2. Stem Cells and Regenerative Medicine
    Genki N Kanda et al.
    Research Article

    Induced differentiation is one of the most experience- and skill-dependent experimental processes in regenerative medicine, and establishing optimal conditions often takes years. We developed a robotic AI system with a batch Bayesian optimization algorithm that autonomously induces the differentiation of induced pluripotent stem cell-derived retinal pigment epithelial (iPSC-RPE) cells. From 200 million possible parameter combinations, the system performed cell culture in 143 different conditions in 111 days, resulting in 88% better iPSC-RPE production than that obtained by the pre-optimized culture in terms of the pigmentation scores. Our work demonstrates that the use of autonomous robotic AI systems drastically accelerates systematic and unbiased exploration of experimental search space, suggesting immense use in medicine and research.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jayashree Kumar et al.
    Research Article Updated

    Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.