Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death

  1. Jazlyn P Borges
  2. Ragnhild SR Sætra
  3. Allen Volchuk
  4. Marit Bugge
  5. Pascal Devant
  6. Bjørnar Sporsheim
  7. Bridget R Kilburn
  8. Charles L Evavold
  9. Jonathan C Kagan
  10. Neil M Goldenberg
  11. Trude Helen Flo
  12. Benjamin Ethan Steinberg  Is a corresponding author
  1. Hospital for Sick Children, Canada
  2. Norwegian University of Science and Technology, Norway
  3. Ragon Institute of MGH, MIT and Harvard, United States
  4. Boston Children's Hospital, United States

Abstract

First recognized more than 30 years ago, glycine protects cells against rupture from diverse types of injury. This robust and widely observed effect has been speculated to target a late downstream process common to multiple modes of tissue injury. The molecular target of glycine that mediates cytoprotection, however, remains elusive. Here, we show that glycine works at the level of NINJ1, a newly identified executioner of plasma membrane rupture in pyroptosis, necrosis, and post-apoptosis lysis. NINJ1 is thought to cluster within the plasma membrane to cause cell rupture. We demonstrate that the execution of pyroptotic cell rupture is similar for human and mouse NINJ1, and that NINJ1 knockout functionally and morphologically phenocopies glycine cytoprotection in macrophages undergoing lytic cell death. Next, we show that glycine prevents NINJ1 clustering by either direct or indirect mechanisms. In pyroptosis, glycine preserves cellular integrity but does not affect upstream inflammasome activities or accompanying energetic cell death. By positioning NINJ1 clustering as a glycine target, our data resolve a long-standing mechanism for glycine-mediated cytoprotection. This new understanding will inform the development of cell preservation strategies to counter pathologic lytic cell death.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, which includes the source data for the manuscript figures.

Article and author information

Author details

  1. Jazlyn P Borges

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ragnhild SR Sætra

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8248-0460
  3. Allen Volchuk

    Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Marit Bugge

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascal Devant

    Ragon Institute of MGH, MIT and Harvard, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bjørnar Sporsheim

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Bridget R Kilburn

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0171-9370
  8. Charles L Evavold

    Ragon Institute of MGH, MIT and Harvard, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonathan C Kagan

    Division of Gastroenterology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2364-2746
  10. Neil M Goldenberg

    Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2785-1852
  11. Trude Helen Flo

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2569-0381
  12. Benjamin Ethan Steinberg

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    For correspondence
    benjamin.steinberg@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3070-0548

Funding

International Anesthesia Research Society (Mentored Research Award)

  • Benjamin Ethan Steinberg

Department of Anesthesiology and Pain Medicine, University of Toronto (Early Investigator Award)

  • Benjamin Ethan Steinberg

Research Council of Norway (287696,223255)

  • Trude Helen Flo

Ragon Institute of MGH, MIT and Harvard (Ragon Early Independence Fellowship)

  • Charles L Evavold

National Institutes of Health (AI133524,AI093589,AI116550,and P30DK3485)

  • Jonathan C Kagan

Boehringer Ingelheim Fonds (PhD Fellowship)

  • Pascal Devant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Hospital for Sick Children Animal Care Committee (AUP #47781).

Human subjects: All human studies were conducted according to the principles expressed in the Helsinki Declaration and approved by the Regional Committee for Medical and Health Research Ethics (No. 2009/2245). Informed consent was obtained from all subjects prior to sample collection.

Copyright

© 2022, Borges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,630
    views
  • 904
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jazlyn P Borges
  2. Ragnhild SR Sætra
  3. Allen Volchuk
  4. Marit Bugge
  5. Pascal Devant
  6. Bjørnar Sporsheim
  7. Bridget R Kilburn
  8. Charles L Evavold
  9. Jonathan C Kagan
  10. Neil M Goldenberg
  11. Trude Helen Flo
  12. Benjamin Ethan Steinberg
(2022)
Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death
eLife 11:e78609.
https://doi.org/10.7554/eLife.78609

Share this article

https://doi.org/10.7554/eLife.78609

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.