Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death

  1. Jazlyn P Borges
  2. Ragnhild SR Sætra
  3. Allen Volchuk
  4. Marit Bugge
  5. Pascal Devant
  6. Bjørnar Sporsheim
  7. Bridget R Kilburn
  8. Charles L Evavold
  9. Jonathan C Kagan
  10. Neil M Goldenberg
  11. Trude Helen Flo
  12. Benjamin Ethan Steinberg  Is a corresponding author
  1. Hospital for Sick Children, Canada
  2. Norwegian University of Science and Technology, Norway
  3. Boston Children's Hospital, United States
  4. Ragon Institute of MGH, MIT and Harvard, United States

Abstract

First recognized more than 30 years ago, glycine protects cells against rupture from diverse types of injury. This robust and widely observed effect has been speculated to target a late downstream process common to multiple modes of tissue injury. The molecular target of glycine that mediates cytoprotection, however, remains elusive. Here, we show that glycine works at the level of NINJ1, a newly identified executioner of plasma membrane rupture in pyroptosis, necrosis, and post-apoptosis lysis. NINJ1 is thought to cluster within the plasma membrane to cause cell rupture. We demonstrate that the execution of pyroptotic cell rupture is similar for human and mouse NINJ1, and that NINJ1 knockout functionally and morphologically phenocopies glycine cytoprotection in macrophages undergoing lytic cell death. Next, we show that glycine prevents NINJ1 clustering by either direct or indirect mechanisms. In pyroptosis, glycine preserves cellular integrity but does not affect upstream inflammasome activities or accompanying energetic cell death. By positioning NINJ1 clustering as a glycine target, our data resolve a long-standing mechanism for glycine-mediated cytoprotection. This new understanding will inform the development of cell preservation strategies to counter pathologic lytic cell death.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, which includes the source data for the manuscript figures.

Article and author information

Author details

  1. Jazlyn P Borges

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ragnhild SR Sætra

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8248-0460
  3. Allen Volchuk

    Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Marit Bugge

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascal Devant

    Division of Gastroenterology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bjørnar Sporsheim

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Bridget R Kilburn

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0171-9370
  8. Charles L Evavold

    Ragon Institute of MGH, MIT and Harvard, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonathan C Kagan

    Division of Gastroenterology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2364-2746
  10. Neil M Goldenberg

    Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2785-1852
  11. Trude Helen Flo

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2569-0381
  12. Benjamin Ethan Steinberg

    Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
    For correspondence
    benjamin.steinberg@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3070-0548

Funding

International Anesthesia Research Society (Mentored Research Award)

  • Benjamin Ethan Steinberg

Department of Anesthesiology and Pain Medicine, University of Toronto (Early Investigator Award)

  • Benjamin Ethan Steinberg

Research Council of Norway (287696,223255)

  • Trude Helen Flo

Ragon Institute of MGH, MIT and Harvard (Ragon Early Independence Fellowship)

  • Charles L Evavold

National Institutes of Health (AI133524,AI093589,AI116550,and P30DK3485)

  • Jonathan C Kagan

Boehringer Ingelheim Fonds (PhD Fellowship)

  • Pascal Devant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carla V Rothlin, Yale University, United States

Ethics

Animal experimentation: All animal studies were approved by the Hospital for Sick Children Animal Care Committee (AUP #47781).

Human subjects: All human studies were conducted according to the principles expressed in the Helsinki Declaration and approved by the Regional Committee for Medical and Health Research Ethics (No. 2009/2245). Informed consent was obtained from all subjects prior to sample collection.

Version history

  1. Preprint posted: December 12, 2021 (view preprint)
  2. Received: March 14, 2022
  3. Accepted: December 5, 2022
  4. Accepted Manuscript published: December 5, 2022 (version 1)
  5. Accepted Manuscript updated: December 8, 2022 (version 2)
  6. Version of Record published: December 15, 2022 (version 3)

Copyright

© 2022, Borges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,635
    views
  • 785
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jazlyn P Borges
  2. Ragnhild SR Sætra
  3. Allen Volchuk
  4. Marit Bugge
  5. Pascal Devant
  6. Bjørnar Sporsheim
  7. Bridget R Kilburn
  8. Charles L Evavold
  9. Jonathan C Kagan
  10. Neil M Goldenberg
  11. Trude Helen Flo
  12. Benjamin Ethan Steinberg
(2022)
Glycine inhibits NINJ1 membrane clustering to suppress plasma membrane rupture in cell death
eLife 11:e78609.
https://doi.org/10.7554/eLife.78609

Share this article

https://doi.org/10.7554/eLife.78609

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.