Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments

  1. Zan He
  2. Zijuan Xin
  3. Qiong Yang
  4. Chen Wang
  5. Meng Li
  6. Wei Rao
  7. Zhimin Du
  8. Jia Bai
  9. Zixuan Guo
  10. Xiuyan Ruan
  11. Zhaojun Zhang
  12. Xiangdong Fang  Is a corresponding author
  13. Hua Zhao  Is a corresponding author
  1. General Hospital of People's Liberation Army, China
  2. Chinese Academy of Sciences, China

Abstract

Acral melanoma (AM) exhibits a high incidence in Asian patients with melanoma, and it is not well treated with immunotherapy. However, little attention has been paid to the characteristics of the immune microenvironment in AM. Therefore, in this study, we collected clinical samples from Chinese patients with AM and conducted single-cell RNA sequencing to analyze the heterogeneity of its tumour microenvironments (TMEs) and the molecular regulatory network . Our analysis revealed that genes, such as TWIST1, EREG, TNFRSF9, and CTGF could drive the deregulation of various TME components. The molecular interaction relationships between TME cells, such as MIF-CD44 and TNFSF9-TNFRSF9, might be an attractive target for developing novel immunotherapeutic agents.

Data availability

Sequencing data have been deposited in GSA under accession codes HRA001804.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zan He

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zijuan Xin

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiong Yang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen Wang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Meng Li

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wei Rao

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhimin Du

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jia Bai

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zixuan Guo

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiuyan Ruan

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhaojun Zhang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xiangdong Fang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    fangxd@big.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Hua Zhao

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    For correspondence
    hualuck301@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7139-1844

Funding

National Natural Science Foundation of China (81672698)

  • Hua Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C Daniela Robles-Espinoza, International Laboratory for Human Genome Research, Mexico

Ethics

Human subjects: All samples were obtained from the General Hospital of the People's Liberation Army, Beijing, China. All volunteers signed informed consent prior to sample acquisition. Four primary AM tissues, three paracancerous tissues, and a metastatic lymph gland sample were included in this cohort. This study was approved by the Ethics Committee of Chinese PLA General Hospital and complied with all relevant ethical regulations(Approval No. S2021-626).

Version history

  1. Preprint posted: August 28, 2021 (view preprint)
  2. Received: March 14, 2022
  3. Accepted: July 25, 2022
  4. Accepted Manuscript published: July 27, 2022 (version 1)
  5. Version of Record published: August 23, 2022 (version 2)
  6. Version of Record updated: September 1, 2022 (version 3)

Copyright

© 2022, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,688
    views
  • 391
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zan He
  2. Zijuan Xin
  3. Qiong Yang
  4. Chen Wang
  5. Meng Li
  6. Wei Rao
  7. Zhimin Du
  8. Jia Bai
  9. Zixuan Guo
  10. Xiuyan Ruan
  11. Zhaojun Zhang
  12. Xiangdong Fang
  13. Hua Zhao
(2022)
Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments
eLife 11:e78616.
https://doi.org/10.7554/eLife.78616

Share this article

https://doi.org/10.7554/eLife.78616

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.