Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments

  1. Zan He
  2. Zijuan Xin
  3. Qiong Yang
  4. Chen Wang
  5. Meng Li
  6. Wei Rao
  7. Zhimin Du
  8. Jia Bai
  9. Zixuan Guo
  10. Xiuyan Ruan
  11. Zhaojun Zhang
  12. Xiangdong Fang  Is a corresponding author
  13. Hua Zhao  Is a corresponding author
  1. General Hospital of People's Liberation Army, China
  2. Chinese Academy of Sciences, China

Abstract

Acral melanoma (AM) exhibits a high incidence in Asian patients with melanoma, and it is not well treated with immunotherapy. However, little attention has been paid to the characteristics of the immune microenvironment in AM. Therefore, in this study, we collected clinical samples from Chinese patients with AM and conducted single-cell RNA sequencing to analyze the heterogeneity of its tumour microenvironments (TMEs) and the molecular regulatory network . Our analysis revealed that genes, such as TWIST1, EREG, TNFRSF9, and CTGF could drive the deregulation of various TME components. The molecular interaction relationships between TME cells, such as MIF-CD44 and TNFSF9-TNFRSF9, might be an attractive target for developing novel immunotherapeutic agents.

Data availability

Sequencing data have been deposited in GSA under accession codes HRA001804.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zan He

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zijuan Xin

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiong Yang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen Wang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Meng Li

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wei Rao

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhimin Du

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jia Bai

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zixuan Guo

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiuyan Ruan

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhaojun Zhang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xiangdong Fang

    Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    fangxd@big.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Hua Zhao

    Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
    For correspondence
    hualuck301@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7139-1844

Funding

National Natural Science Foundation of China (81672698)

  • Hua Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All samples were obtained from the General Hospital of the People's Liberation Army, Beijing, China. All volunteers signed informed consent prior to sample acquisition. Four primary AM tissues, three paracancerous tissues, and a metastatic lymph gland sample were included in this cohort. This study was approved by the Ethics Committee of Chinese PLA General Hospital and complied with all relevant ethical regulations(Approval No. S2021-626).

Reviewing Editor

  1. C Daniela Robles-Espinoza, International Laboratory for Human Genome Research, Mexico

Publication history

  1. Received: March 14, 2022
  2. Accepted: July 25, 2022
  3. Accepted Manuscript published: July 27, 2022 (version 1)

Copyright

© 2022, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 206
    Page views
  • 138
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zan He
  2. Zijuan Xin
  3. Qiong Yang
  4. Chen Wang
  5. Meng Li
  6. Wei Rao
  7. Zhimin Du
  8. Jia Bai
  9. Zixuan Guo
  10. Xiuyan Ruan
  11. Zhaojun Zhang
  12. Xiangdong Fang
  13. Hua Zhao
(2022)
Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments
eLife 11:e78616.
https://doi.org/10.7554/eLife.78616

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Gabriel Renaud et al.
    Research Article Updated

    Sequencing of cell-free DNA (cfDNA) is currently being used to detect cancer by searching both for mutational and non-mutational alterations. Recent work has shown that the length distribution of cfDNA fragments from a cancer patient can inform tumor load and type. Here, we propose non-negative matrix factorization (NMF) of fragment length distributions as a novel and completely unsupervised method for studying fragment length patterns in cfDNA. Using shallow whole-genome sequencing (sWGS) of cfDNA from a cohort of patients with metastatic castration-resistant prostate cancer (mCRPC), we demonstrate how NMF accurately infers the true tumor fragment length distribution as an NMF component - and that the sample weights of this component correlate with ctDNA levels (r=0.75). We further demonstrate how using several NMF components enables accurate cancer detection on data from various early stage cancers (AUC = 0.96). Finally, we show that NMF, when applied across genomic regions, can be used to discover fragment length signatures associated with open chromatin.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ariel Ogran et al.
    Research Article

    The transformation of normal to malignant cells is accompanied by substantial changes in gene expression programs through diverse mechanisms. Here, we examined the changes in the landscape of transcription start sites and alternative promoter (AP) usage and their impact on the translatome in TCL1-driven chronic lymphocytic leukemia (CLL). Our findings revealed a marked elevation of APs in CLL B cells from Eµ-Tcl1 transgenic mice, which are particularly enriched with intra-genic promoters that generate N-terminally truncated or modified proteins. Intra-genic promoter activation is mediated by (1) loss of function of ‘closed chromatin’ epigenetic regulators due to the generation of inactive N-terminally modified isoforms or reduced expression; (2) upregulation of transcription factors, including c-Myc, targeting the intra-genic promoters and their associated enhancers. Exogenous expression of Tcl1 in MEFs is sufficient to induce intra-genic promoters of epigenetic regulators and promote c-Myc expression. We further found a dramatic translation downregulation of transcripts bearing CNY cap-proximal trinucleotides, reminiscent of cells undergoing metabolic stress. These findings uncovered the role of Tcl1 oncogenic function in altering promoter usage and mRNA translation in leukemogenesis.