Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors

Abstract

We aimed to elucidate the evolutionary trajectories of gallbladder adenocarcinoma (GBAC) using multi-regional and longitudinal tumor samples. Using whole-exome sequencing data, we constructed phylogenetic trees in each patient and analyzed mutational signatures. A total of 11 patients including 2 rapid autopsy cases were enrolled. The most frequently altered gene in primary tumors was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Most mutations in frequently altered genes in primary tumors were detectable in concurrent precancerous lesions (biliary intraepithelial neoplasia, BilIN), but a substantial proportion was subclonal. Subclonal diversity was common in BilIN (n=4). However, among subclones in BilIN, a certain subclone commonly shrank in concurrent primary tumors. In addition, selected subclones underwent linear and branching evolution, maintaining subclonal diversity. Combined analysis with metastatic tumors (n=11) identified branching evolution in 9 patients (81.8%). Of these, 8 patients (88.9%) had a total of 11 subclones expanded at least 7-fold during metastasis. These subclones harbored putative metastasis-driving mutations in cancer-related genes such as SMAD4, ROBO1, and DICER1. In mutational signature analysis, 6 mutational signatures were identified: 1, 3, 7, 13, 22, and 24 (cosine similarity >0.9). Signatures 1 (age) and 13 (APOBEC) decreased during metastasis while signatures 22 (aristolochic acid) and 24 (aflatoxin) were relatively highlighted. Subclonal diversity arose early in precancerous lesions and clonal selection was a common event during malignant transformation in GBAC. However, selected cancer clones continued to evolve and thus maintained subclonal diversity in metastatic tumors.

Data availability

The raw sequence data underlying this manuscript are available as fastq files at the NCBI SRA database under the BioProject number PRJNA821382.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Minsu Kang

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6491-2277
  2. Hee Young Na

    Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Soomin Ahn

    Department of Pathology, Sungkyunkwan University, Seoul, Republic of Korea
    For correspondence
    suminy317@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  4. Ji-Won Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    For correspondence
    jiwonkim@snubh.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6426-9074
  5. Sejoon Lee

    Center for Precision Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Soyeon Ahn

    Medical Research Collaboration Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Ju Hyun Lee

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeonghwan Youk

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Haesook T Kim

    Department of Data Science, Dana Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kui-Jin Kim

    Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Koung Jin Suh

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Jun Suh Lee

    Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Se Hyun Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2292-906X
  14. Jin Won Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  15. Yu Jung Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. Keun-Wook Lee

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  17. Yoo-Seok Yoon

    Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  18. Jee Hyun Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  19. Jin-Haeng Chung

    Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  20. Ho-Seong Han

    Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  21. Jong Seok Lee

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.

Funding

Seoul National University Bundang Hospital Research Fund (No. 16-2021-001)

  • Ji-Won Kim

Small Grant for Exploratory Reserach (NRF-2018R1D1A1A02086240)

  • Ji-Won Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Seoul National University Bundang Hospital (Number: B-1902/522-303). Informed consent was waived because of the retrospective and anonymous nature of the study.

Copyright

© 2022, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 973
    views
  • 157
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Minsu Kang
  2. Hee Young Na
  3. Soomin Ahn
  4. Ji-Won Kim
  5. Sejoon Lee
  6. Soyeon Ahn
  7. Ju Hyun Lee
  8. Jeonghwan Youk
  9. Haesook T Kim
  10. Kui-Jin Kim
  11. Koung Jin Suh
  12. Jun Suh Lee
  13. Se Hyun Kim
  14. Jin Won Kim
  15. Yu Jung Kim
  16. Keun-Wook Lee
  17. Yoo-Seok Yoon
  18. Jee Hyun Kim
  19. Jin-Haeng Chung
  20. Ho-Seong Han
  21. Jong Seok Lee
(2022)
Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors
eLife 11:e78636.
https://doi.org/10.7554/eLife.78636

Share this article

https://doi.org/10.7554/eLife.78636

Further reading

    1. Cancer Biology
    Ruijing Tang, Luobin Guo ... Xiaolong Liu
    Research Article

    Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.

    1. Cancer Biology
    Elazar Besser, Anat Gelfand ... David Meiri
    Research Article

    In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.