Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors

  1. Minsu Kang
  2. Hee Young Na
  3. Soomin Ahn  Is a corresponding author
  4. Ji-Won Kim  Is a corresponding author
  5. Sejoon Lee
  6. Soyeon Ahn
  7. Ju Hyun Lee
  8. Jeonghwan Youk
  9. Haesook T Kim
  10. Kui-Jin Kim
  11. Koung Jin Suh
  12. Jun Suh Lee
  13. Se Hyun Kim
  14. Jin Won Kim
  15. Yu Jung Kim
  16. Keun-Wook Lee
  17. Yoo-Seok Yoon
  18. Jee Hyun Kim
  19. Jin-Haeng Chung
  20. Ho-Seong Han
  21. Jong Seok Lee
  1. Seoul National University Bundang Hospital, Republic of Korea
  2. Sungkyunkwan University, Republic of Korea
  3. Dana Farber Cancer Institute, United States

Abstract

We aimed to elucidate the evolutionary trajectories of gallbladder adenocarcinoma (GBAC) using multi-regional and longitudinal tumor samples. Using whole-exome sequencing data, we constructed phylogenetic trees in each patient and analyzed mutational signatures. A total of 11 patients including 2 rapid autopsy cases were enrolled. The most frequently altered gene in primary tumors was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Most mutations in frequently altered genes in primary tumors were detectable in concurrent precancerous lesions (biliary intraepithelial neoplasia, BilIN), but a substantial proportion was subclonal. Subclonal diversity was common in BilIN (n=4). However, among subclones in BilIN, a certain subclone commonly shrank in concurrent primary tumors. In addition, selected subclones underwent linear and branching evolution, maintaining subclonal diversity. Combined analysis with metastatic tumors (n=11) identified branching evolution in 9 patients (81.8%). Of these, 8 patients (88.9%) had a total of 11 subclones expanded at least 7-fold during metastasis. These subclones harbored putative metastasis-driving mutations in cancer-related genes such as SMAD4, ROBO1, and DICER1. In mutational signature analysis, 6 mutational signatures were identified: 1, 3, 7, 13, 22, and 24 (cosine similarity >0.9). Signatures 1 (age) and 13 (APOBEC) decreased during metastasis while signatures 22 (aristolochic acid) and 24 (aflatoxin) were relatively highlighted. Subclonal diversity arose early in precancerous lesions and clonal selection was a common event during malignant transformation in GBAC. However, selected cancer clones continued to evolve and thus maintained subclonal diversity in metastatic tumors.

Data availability

The raw sequence data underlying this manuscript are available as fastq files at the NCBI SRA database under the BioProject number PRJNA821382.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Minsu Kang

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6491-2277
  2. Hee Young Na

    Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Soomin Ahn

    Department of Pathology, Sungkyunkwan University, Seoul, Republic of Korea
    For correspondence
    suminy317@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  4. Ji-Won Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    For correspondence
    jiwonkim@snubh.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6426-9074
  5. Sejoon Lee

    Center for Precision Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Soyeon Ahn

    Medical Research Collaboration Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Ju Hyun Lee

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeonghwan Youk

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Haesook T Kim

    Department of Data Science, Dana Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kui-Jin Kim

    Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Koung Jin Suh

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Jun Suh Lee

    Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Se Hyun Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2292-906X
  14. Jin Won Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  15. Yu Jung Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. Keun-Wook Lee

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  17. Yoo-Seok Yoon

    Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  18. Jee Hyun Kim

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  19. Jin-Haeng Chung

    Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  20. Ho-Seong Han

    Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  21. Jong Seok Lee

    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.

Funding

Seoul National University Bundang Hospital Research Fund (No. 16-2021-001)

  • Ji-Won Kim

Small Grant for Exploratory Reserach (NRF-2018R1D1A1A02086240)

  • Ji-Won Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Seoul National University Bundang Hospital (Number: B-1902/522-303). Informed consent was waived because of the retrospective and anonymous nature of the study.

Reviewing Editor

  1. Samra Turajlic, The Francis Crick Institute, United Kingdom

Publication history

  1. Received: March 14, 2022
  2. Preprint posted: April 1, 2022 (view preprint)
  3. Accepted: December 6, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Accepted Manuscript updated: December 16, 2022 (version 2)
  6. Version of Record published: December 21, 2022 (version 3)

Copyright

© 2022, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 514
    Page views
  • 90
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Minsu Kang
  2. Hee Young Na
  3. Soomin Ahn
  4. Ji-Won Kim
  5. Sejoon Lee
  6. Soyeon Ahn
  7. Ju Hyun Lee
  8. Jeonghwan Youk
  9. Haesook T Kim
  10. Kui-Jin Kim
  11. Koung Jin Suh
  12. Jun Suh Lee
  13. Se Hyun Kim
  14. Jin Won Kim
  15. Yu Jung Kim
  16. Keun-Wook Lee
  17. Yoo-Seok Yoon
  18. Jee Hyun Kim
  19. Jin-Haeng Chung
  20. Ho-Seong Han
  21. Jong Seok Lee
(2022)
Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors
eLife 11:e78636.
https://doi.org/10.7554/eLife.78636

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Mark Borris D Aldonza, Junghwa Cha ... Yoosik Kim
    Research Article

    Cancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post- translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In cancer cell cultures, xenograft mouse models, and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycoproteomes identified fucosylation of the antioxidant PON1 as a critical component of the therapy-induced secretome (TIS). N-glycosylation of TIS and target core fucosylation of PON1 are mediated by the fucose salvage-FUT8-SLC35C1 axis with PON3 directly modulating GDP-Fuc transfer on PON1 scaffolds. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Global and PON1-specific secretome de-N-glycosylation both limited the expansion of resistant clones in a tumor regression model. We defined the resistance-associated transcription factors (TFs) and genes modulated by the N-glycosylated TIS via a focused and transcriptome-wide analyses. These genes characterize the oxidative stress, inflammatory niche, and unfolded protein response as important factors for this modulation. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.

    1. Cancer Biology
    2. Microbiology and Infectious Disease
    Gabriel J Starrett, Kelly Yu ... Eric A Engels
    Research Article

    A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have overall poorer outcome, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with the antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.