Mitochondrial redox adaptations enable alternative aspartatesynthesis in SDH-deficient cells

  1. Madeleine L Hart
  2. Evan Quon
  3. Anna-Lena BG Vigil
  4. Ian A Engstrom
  5. Oliver J Newsom
  6. Kristian Davidsen
  7. Pia Hoellerbauer
  8. Samantha M Carlisle
  9. Lucas B Sullivan  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. New Mexico State University, United States

Abstract

The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD+ to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss of function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1-8.

Article and author information

Author details

  1. Madeleine L Hart

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Evan Quon

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna-Lena BG Vigil

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ian A Engstrom

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver J Newsom

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristian Davidsen

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3821-6902
  7. Pia Hoellerbauer

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Samantha M Carlisle

    Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lucas B Sullivan

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    lucas@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6745-8222

Funding

National Cancer Institute (P30CA015704)

  • Lucas B Sullivan

National Institute of General Medical Sciences (T32GM095421)

  • Madeleine L Hart

National Cancer Institute (R00CA218679-03S1)

  • Madeleine L Hart

National Cancer Institute (R00CA218679)

  • Lucas B Sullivan

National Institute of General Medical Sciences (R35GM147118)

  • Lucas B Sullivan

Andy Hill Cancer Research Endowment (CARE Award)

  • Lucas B Sullivan

National Cancer Institute (U54CA132381)

  • Samantha M Carlisle
  • Lucas B Sullivan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark S Sharpley, Cedars-Sinai Medical Center, United States

Ethics

Animal experimentation: All mouse work was performed in accordance with FHCC-approved IACUC protocol 51069 and AAALAS guidelines and ethical regulations.

Version history

  1. Preprint posted: March 14, 2022 (view preprint)
  2. Received: March 15, 2022
  3. Accepted: March 6, 2023
  4. Accepted Manuscript published: March 8, 2023 (version 1)
  5. Accepted Manuscript updated: March 9, 2023 (version 2)
  6. Version of Record published: March 20, 2023 (version 3)

Copyright

© 2023, Hart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,305
    views
  • 444
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madeleine L Hart
  2. Evan Quon
  3. Anna-Lena BG Vigil
  4. Ian A Engstrom
  5. Oliver J Newsom
  6. Kristian Davidsen
  7. Pia Hoellerbauer
  8. Samantha M Carlisle
  9. Lucas B Sullivan
(2023)
Mitochondrial redox adaptations enable alternative aspartatesynthesis in SDH-deficient cells
eLife 12:e78654.
https://doi.org/10.7554/eLife.78654

Share this article

https://doi.org/10.7554/eLife.78654

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.