Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells

  1. Madeleine L Hart
  2. Evan Quon
  3. Anna-Lena BG Vigil
  4. Ian A Engstrom
  5. Oliver J Newsom
  6. Kristian Davidsen
  7. Pia Hoellerbauer
  8. Samantha M Carlisle
  9. Lucas B Sullivan  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. New Mexico State University, United States

Abstract

The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD+ to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss of function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1-8.

Article and author information

Author details

  1. Madeleine L Hart

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Evan Quon

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna-Lena BG Vigil

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ian A Engstrom

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver J Newsom

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristian Davidsen

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3821-6902
  7. Pia Hoellerbauer

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Samantha M Carlisle

    Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lucas B Sullivan

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    lucas@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6745-8222

Funding

National Cancer Institute (P30CA015704)

  • Lucas B Sullivan

National Institute of General Medical Sciences (T32GM095421)

  • Madeleine L Hart

National Cancer Institute (R00CA218679-03S1)

  • Madeleine L Hart

National Cancer Institute (R00CA218679)

  • Lucas B Sullivan

National Institute of General Medical Sciences (R35GM147118)

  • Lucas B Sullivan

Andy Hill Cancer Research Endowment (CARE Award)

  • Lucas B Sullivan

National Cancer Institute (U54CA132381)

  • Samantha M Carlisle
  • Lucas B Sullivan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse work was performed in accordance with FHCC-approved IACUC protocol 51069 and AAALAS guidelines and ethical regulations.

Copyright

© 2023, Hart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,372
    views
  • 522
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madeleine L Hart
  2. Evan Quon
  3. Anna-Lena BG Vigil
  4. Ian A Engstrom
  5. Oliver J Newsom
  6. Kristian Davidsen
  7. Pia Hoellerbauer
  8. Samantha M Carlisle
  9. Lucas B Sullivan
(2023)
Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells
eLife 12:e78654.
https://doi.org/10.7554/eLife.78654

Share this article

https://doi.org/10.7554/eLife.78654

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.