A neurogenic signature involving monoamine oxidase-a controls human thermogenic adipose tissue development
Abstract
Mechanisms that control 'beige/brite' thermogenic adipose tissue development may be harnessed to improve human metabolic health. To define these mechanisms, we developed a species-hybrid model in which human mesenchymal progenitor cells were used to develop white or thermogenic/beige adipose tissue in mice. The hybrid adipose tissue developed distinctive features of human adipose tissue, such as larger adipocyte size, despite its neurovascular architecture being entirely of murine origin. Thermogenic adipose tissue recruited a denser, qualitatively distinct vascular network, differing in genes mapping to circadian rhythm pathways, and denser sympathetic innervation. The enhanced thermogenic neurovascular network was associated with human adipocyte expression of THBS4, TNC, NTRK3 and SPARCL1, which enhance neurogenesis, and decreased expression of MAOA and ACHE, which control neurotransmitter tone. Systemic inhibition of MAOA, which is present in human but absent in mouse adipocytes, induced browning of human but not mouse adipose tissue, revealing the physiological relevance of this pathway. Our results reveal species-specific cell type dependencies controlling the development of thermogenic adipose tissue and point to human adipocyte MAOA as a potential target for metabolic disease therapy.
Data availability
RNASeq data has been deposited in the Gene Expression Omnibus under the accession number GSE200141.
-
A neurogenic signature involving monoamine oxidase-a controls human thermogenic adipose tissue developmentNCBI Gene Expression Omnibus, GSE200141.
Article and author information
Author details
Funding
National Institutes of Health (DK089101)
- Silvia Corvera
National Institutes of Health (DK123028)
- Silvia Corvera
National Institutes of Health (GM135751)
- Javier Solivan-Rivera
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures were performed in accordance with the University of Massachusetts Medical School's Institutional Animal Care and use Committee protocol PROTO202100015.
Copyright
© 2022, Solivan-Rivera et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,470
- views
-
- 341
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.
-
- Developmental Biology
Proteins that allow water to move in and out of cells help shape the development of new blood vessels.