Balancing selection on genomic deletion polymorphisms in humans

  1. Alber Aqil
  2. Leo Speidel
  3. Pavlos Pavlidis
  4. Omer Gokcumen  Is a corresponding author
  1. University at Buffalo, State University of New York, United States
  2. University College London, United Kingdom
  3. Foundation for Research and Technology Hellas, Greece

Abstract

A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains imperative. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single-nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.

Data availability

All data that are used in the study can be found publically. The references and databases are provided in the manuscript. The code and resulting datasets are all provided either through our laboratory's GitHub page, FigShare, or as supplementary tables.

The following data sets were generated
The following previously published data sets were used
    1. Neale et al
    (2018) UK Biobank - Curated
    https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit#gid=227859291.
    1. Londsdale et al
    (2013) GTEX
    dbGaP accession number phs000424.vN.pN.

Article and author information

Author details

  1. Alber Aqil

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6784-6495
  2. Leo Speidel

    Genetics Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pavlos Pavlidis

    Institute of Computer Science (ICS), Foundation for Research and Technology Hellas, Heraklion, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Omer Gokcumen

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    For correspondence
    gokcumen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4371-679X

Funding

National Science Foundation (2123284)

  • Omer Gokcumen

Sir Henry Wellcome Fellowship (220457/Z/20/Z)

  • Leo Speidel

Wellcome Trust

  • Alber Aqil

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philipp W Messer, Cornell University, United States

Ethics

Human subjects: This study investigated variation in previously published anonymized genome data from the 1000 Genomes Project.

Version history

  1. Received: March 31, 2022
  2. Preprint posted: April 28, 2022 (view preprint)
  3. Accepted: January 5, 2023
  4. Accepted Manuscript published: January 10, 2023 (version 1)
  5. Accepted Manuscript updated: January 11, 2023 (version 2)
  6. Version of Record published: February 21, 2023 (version 3)

Copyright

© 2023, Aqil et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,439
    Page views
  • 445
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alber Aqil
  2. Leo Speidel
  3. Pavlos Pavlidis
  4. Omer Gokcumen
(2023)
Balancing selection on genomic deletion polymorphisms in humans
eLife 12:e79111.
https://doi.org/10.7554/eLife.79111

Share this article

https://doi.org/10.7554/eLife.79111

Further reading

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.

    1. Evolutionary Biology
    Zhiliang Zhang, Zhifei Zhang ... Guoxiang Li
    Research Article

    Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.