Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex
Abstract
Sexual reproduction is a ubiquitous and ancient trait of eukaryotic life. While sexual organisms are usually faced with the challenge of finding a compatible mating partner, species as diverse as animals, plants, and fungi have repeatedly evolved the ability to reproduce sexually without an obligate requirement for another individual. Here, we uncovered the underlying mechanism of self-compatibility (homothallism) in Cryptococcus depauperatus, a fungal species sister to the clinically relevant human fungal pathogens Cryptococcus neoformans and Cryptococcus gattii species complexes. In contrast to C. neoformans or C. gattii, which grow as a yeast in the asexual stage, and produce hyphae, basidia, and infectious spores during the sexual stage, C. depauperatus grows exclusively as hyphae decorated with basidia and abundant spores and appears to be continuously engaged in sexual reproduction. By combining the insights from comparative genomics and genetic analyses of mutants defective in key mating and meiosis genes, we demonstrate the sexual cycle of C. depauperatus involves meiosis, and reveal that self-compatibility is orchestrated by the expression, in the same cell, of an unlinked mating receptor (Ste3a) and pheromone ligand (MFa) pair seemingly derived from opposite mating types of a heterothallic (self-sterile) ancestor. We identified a putative mating-type (MAT) determining region containing genes phylogenetically aligned with MAT<strong>a</strong> alleles of other species, and a few MATa gene alleles scattered and unlinked throughout the genome, but no homologs of the mating-type homeodomain genes SXI1 (HD1) and SXI2 (HD2). Comparative genomic analyses suggested a dramatic remodeling of the MAT locus possibly owing to reduced selective constraints to maintain mating-type genes in tight linkage, associated with a transition to self-fertility. Our findings support C. depauperatus as an obligately sexual, homothallic fungal species and provide additional insight into the repeated transitions between modes of sexual reproduction that have occurred throughout the fungal kingdom.
Data availability
Sequencing reads and genome assemblies of C. depauperatus CBS7841 and CBS7855 were submitted to GenBank under BioProjects PRJNA200572 and PRJNA200573, respectively. All other genomic data (RNA-seq and Illumina sequence of C. depauperatus CBS7841 can1 mutants) are available under BioProject PRJNA803141. Source data files have been provided for Figures 1 to 7.
-
Cryptotoccus SequencingNCBI BioProject, PRJNA200572.
-
Cryptotoccus SequencingNCBI BioProject, PRJNA200573.
-
Cryptococcus depauperatus raw sequence readsNCBI BioProject, PRJNA803141.
-
Cryptococcus neoformans var. grubii H99 genomeNCBI BioProject, PRJNA411.
-
Cryptotoccus SequencingNCBI BioProject, PRJNA200571.
-
Cryptotoccus SequencingNCBI BioProject, PRJNA191370.
-
Cryptococcus floricola strain DSM 27421 Genome sequencing and assemblyNCBI BioProject, PRJNA496466.
-
Cryptococcus wingfieldii strain CBS7118 Genome sequencing and assemblyNCBI BioProject, PRJNA496468.
-
WGS sequencing of strain JEC21 (serotype D)NCBI BioProject, PRJNA13856.
-
Cryptococcus gattii WM276 RefSeq GenomeNCBI BioProject, PRJNA62089.
-
Kwoniella mangroviensis CBS 8507NCBI BioProject, PRJNA352839.
-
Kwoniella mangroviensis CBS 10435NCBI BioProject, PRJNA202099.
Article and author information
Author details
Funding
National Institute of Allergy and Infectious Diseases (AI50113-17)
- Joseph Heitman
National Institute of Allergy and Infectious Diseases (AI39115-24)
- Joseph Heitman
National Institute of Allergy and Infectious Diseases (AI33654-04)
- Joseph Heitman
National Institutes of Health (U54HG003067)
- Christina A Cuomo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Passer et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,544
- views
-
- 297
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Genetics and Genomics
Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.
-
- Developmental Biology
- Genetics and Genomics
The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.