Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex

  1. Andrew Ryan Passer
  2. Shelly Applen Clancey
  3. Terrance Shea
  4. Márcia David-Palma
  5. Anna Floyd Averette
  6. Teun Boekhout
  7. Betina M Porcel
  8. Minou Nowrousian
  9. Christina A Cuomo
  10. Sheng Sun
  11. Joseph Heitman  Is a corresponding author
  12. Marco A Coelho  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Broad Institute, United States
  3. Westerdijk Fungal Biodiversity Institute, Netherlands
  4. CNRS, University Evry, France
  5. Ruhr-University Bochum, Germany

Abstract

Sexual reproduction is a ubiquitous and ancient trait of eukaryotic life. While sexual organisms are usually faced with the challenge of finding a compatible mating partner, species as diverse as animals, plants, and fungi have repeatedly evolved the ability to reproduce sexually without an obligate requirement for another individual. Here, we uncovered the underlying mechanism of self-compatibility (homothallism) in Cryptococcus depauperatus, a fungal species sister to the clinically relevant human fungal pathogens Cryptococcus neoformans and Cryptococcus gattii species complexes. In contrast to C. neoformans or C. gattii, which grow as a yeast in the asexual stage, and produce hyphae, basidia, and infectious spores during the sexual stage, C. depauperatus grows exclusively as hyphae decorated with basidia and abundant spores and appears to be continuously engaged in sexual reproduction. By combining the insights from comparative genomics and genetic analyses of mutants defective in key mating and meiosis genes, we demonstrate the sexual cycle of C. depauperatus involves meiosis, and reveal that self-compatibility is orchestrated by the expression, in the same cell, of an unlinked mating receptor (Ste3a) and pheromone ligand (MFa) pair seemingly derived from opposite mating types of a heterothallic (self-sterile) ancestor. We identified a putative mating-type (MAT) determining region containing genes phylogenetically aligned with MAT<strong>a</strong> alleles of other species, and a few MATa gene alleles scattered and unlinked throughout the genome, but no homologs of the mating-type homeodomain genes SXI1 (HD1) and SXI2 (HD2). Comparative genomic analyses suggested a dramatic remodeling of the MAT locus possibly owing to reduced selective constraints to maintain mating-type genes in tight linkage, associated with a transition to self-fertility. Our findings support C. depauperatus as an obligately sexual, homothallic fungal species and provide additional insight into the repeated transitions between modes of sexual reproduction that have occurred throughout the fungal kingdom.

Data availability

Sequencing reads and genome assemblies of C. depauperatus CBS7841 and CBS7855 were submitted to GenBank under BioProjects PRJNA200572 and PRJNA200573, respectively. All other genomic data (RNA-seq and Illumina sequence of C. depauperatus CBS7841 can1 mutants) are available under BioProject PRJNA803141. Source data files have been provided for Figures 1 to 7.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Andrew Ryan Passer

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shelly Applen Clancey

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Terrance Shea

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Márcia David-Palma

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Floyd Averette

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Teun Boekhout

    Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Betina M Porcel

    Génomique Métabolique, CNRS, University Evry, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Minou Nowrousian

    Lehrstuhl fuer Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0075-6695
  9. Christina A Cuomo

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5778-960X
  10. Sheng Sun

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2895-1153
  11. Joseph Heitman

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    heitm001@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6369-5995
  12. Marco A Coelho

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    marco.dias.coelho@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5716-0561

Funding

National Institute of Allergy and Infectious Diseases (AI50113-17)

  • Joseph Heitman

National Institute of Allergy and Infectious Diseases (AI39115-24)

  • Joseph Heitman

National Institute of Allergy and Infectious Diseases (AI33654-04)

  • Joseph Heitman

National Institutes of Health (U54HG003067)

  • Christina A Cuomo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Passer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,506
    views
  • 293
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Ryan Passer
  2. Shelly Applen Clancey
  3. Terrance Shea
  4. Márcia David-Palma
  5. Anna Floyd Averette
  6. Teun Boekhout
  7. Betina M Porcel
  8. Minou Nowrousian
  9. Christina A Cuomo
  10. Sheng Sun
  11. Joseph Heitman
  12. Marco A Coelho
(2022)
Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex
eLife 11:e79114.
https://doi.org/10.7554/eLife.79114

Share this article

https://doi.org/10.7554/eLife.79114

Further reading

    1. Genetics and Genomics
    Nathan M Shugarts Devanapally, Aishwarya Sathya ... Antony M Jose
    Research Article

    RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.