Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex

  1. Andrew Ryan Passer
  2. Shelly Applen Clancey
  3. Terrance Shea
  4. Márcia David-Palma
  5. Anna Floyd Averette
  6. Teun Boekhout
  7. Betina M Porcel
  8. Minou Nowrousian
  9. Christina A Cuomo
  10. Sheng Sun
  11. Joseph Heitman  Is a corresponding author
  12. Marco A Coelho  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Broad Institute, United States
  3. Westerdijk Fungal Biodiversity Institute, Netherlands
  4. CNRS, University Evry, France
  5. Ruhr-University Bochum, Germany

Abstract

Sexual reproduction is a ubiquitous and ancient trait of eukaryotic life. While sexual organisms are usually faced with the challenge of finding a compatible mating partner, species as diverse as animals, plants, and fungi have repeatedly evolved the ability to reproduce sexually without an obligate requirement for another individual. Here, we uncovered the underlying mechanism of self-compatibility (homothallism) in Cryptococcus depauperatus, a fungal species sister to the clinically relevant human fungal pathogens Cryptococcus neoformans and Cryptococcus gattii species complexes. In contrast to C. neoformans or C. gattii, which grow as a yeast in the asexual stage, and produce hyphae, basidia, and infectious spores during the sexual stage, C. depauperatus grows exclusively as hyphae decorated with basidia and abundant spores and appears to be continuously engaged in sexual reproduction. By combining the insights from comparative genomics and genetic analyses of mutants defective in key mating and meiosis genes, we demonstrate the sexual cycle of C. depauperatus involves meiosis, and reveal that self-compatibility is orchestrated by the expression, in the same cell, of an unlinked mating receptor (Ste3a) and pheromone ligand (MFa) pair seemingly derived from opposite mating types of a heterothallic (self-sterile) ancestor. We identified a putative mating-type (MAT) determining region containing genes phylogenetically aligned with MAT<strong>a</strong> alleles of other species, and a few MATa gene alleles scattered and unlinked throughout the genome, but no homologs of the mating-type homeodomain genes SXI1 (HD1) and SXI2 (HD2). Comparative genomic analyses suggested a dramatic remodeling of the MAT locus possibly owing to reduced selective constraints to maintain mating-type genes in tight linkage, associated with a transition to self-fertility. Our findings support C. depauperatus as an obligately sexual, homothallic fungal species and provide additional insight into the repeated transitions between modes of sexual reproduction that have occurred throughout the fungal kingdom.

Data availability

Sequencing reads and genome assemblies of C. depauperatus CBS7841 and CBS7855 were submitted to GenBank under BioProjects PRJNA200572 and PRJNA200573, respectively. All other genomic data (RNA-seq and Illumina sequence of C. depauperatus CBS7841 can1 mutants) are available under BioProject PRJNA803141. Source data files have been provided for Figures 1 to 7.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Andrew Ryan Passer

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shelly Applen Clancey

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Terrance Shea

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Márcia David-Palma

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Floyd Averette

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Teun Boekhout

    Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Betina M Porcel

    Génomique Métabolique, CNRS, University Evry, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Minou Nowrousian

    Lehrstuhl fuer Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0075-6695
  9. Christina A Cuomo

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5778-960X
  10. Sheng Sun

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2895-1153
  11. Joseph Heitman

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    heitm001@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6369-5995
  12. Marco A Coelho

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    marco.dias.coelho@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5716-0561

Funding

National Institute of Allergy and Infectious Diseases (AI50113-17)

  • Joseph Heitman

National Institute of Allergy and Infectious Diseases (AI39115-24)

  • Joseph Heitman

National Institute of Allergy and Infectious Diseases (AI33654-04)

  • Joseph Heitman

National Institutes of Health (U54HG003067)

  • Christina A Cuomo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Passer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,474
    views
  • 289
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Ryan Passer
  2. Shelly Applen Clancey
  3. Terrance Shea
  4. Márcia David-Palma
  5. Anna Floyd Averette
  6. Teun Boekhout
  7. Betina M Porcel
  8. Minou Nowrousian
  9. Christina A Cuomo
  10. Sheng Sun
  11. Joseph Heitman
  12. Marco A Coelho
(2022)
Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex
eLife 11:e79114.
https://doi.org/10.7554/eLife.79114

Share this article

https://doi.org/10.7554/eLife.79114

Further reading

    1. Genetics and Genomics
    Sophie Debaenst, Tamara Jarayseh ... Andy Willaert
    Research Article

    Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes. Six genes linked to severe recessive osteogenesis imperfecta (OI) and four associated with bone mineral density (BMD) from genome-wide association studies were analyzed using CRISPR/Cas9-based crispant screening in F0 mosaic founder zebrafish. Next-generation sequencing confirmed high indel efficiency (mean 88%), mimicking stable knock-out models. Skeletal phenotyping at 7, 14, and 90 days post-fertilization (dpf) using microscopy, Alizarin Red S staining, and microCT was performed. Larval crispants showed variable osteoblast and mineralization phenotypes, while adult crispants displayed consistent skeletal defects, including malformed neural and haemal arches, vertebral fractures and fusions, and altered bone volume and density. In addition, aldh7a1 and mbtps2 crispants experienced increased mortality due to severe skeletal deformities. RT-qPCR revealed differential expression of osteogenic markers bglap and col1a1a, highlighting their biomarker potential. Our results establish zebrafish crispant screening as a robust tool for FBD gene validation, combining skeletal and molecular analyses across developmental stages to uncover novel insights into gene functions in bone biology.

    1. Genetics and Genomics
    Khanh B Trang, Matthew C Pahl ... Struan FA Grant
    Research Article

    The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18, and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 – an inflammation-responsive gene in nerve nociceptors – was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.