The unmitigated profile of COVID-19 infectiousness

  1. Ron Sender
  2. Yinon Bar-On
  3. Sang Woo Park
  4. Elad Noor
  5. Jonathan Dushoff
  6. Ron Milo  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Princeton University, United States
  3. McMaster University, Canada

Abstract

Quantifying the temporal dynamics of infectiousness of individuals infected with SARS-CoV-2 is crucial for understanding the spread of COVID-19 and for evaluating the effectiveness of mitigation strategies. Many studies have estimated the infectiousness profile using observed serial intervals. However, statistical and epidemiological biases could lead to underestimation of the duration of infectiousness. We correct for these biases by curating data from the initial outbreak of the pandemic in China (when mitigation was minimal), and find that the infectiousness profile of the original strain is longer than previously thought. Sensitivity analysis shows our results are robust to model structure, assumed growth rate and potential observational biases. Although unmitigated transmission data is lacking for variants of concern (VOC), previous analyses suggest that the alpha and delta variants have faster within-host kinetics, which we extrapolate to crude estimates of variant-specific unmitigated generation intervals. Knowing the unmitigated infectiousness profile of infected individuals can inform estimates of the effectiveness of isolation and quarantine measures. The framework presented here can help design better quarantine policies in early stages of future epidemics.

Data availability

All study data are included in the article, SI appendix, and Dataset S1.All code is available in Jupyter notebooks found inhttps://gitlab.com/milo-lab-public/the-unmitigated-profile-of-covid-19-infectiousness

The following previously published data sets were used
    1. Wu et al
    (2020) Supplementary Table 8. Dates of symptom onset of infector-infectee pairs
    Supplementary Table 8. Dates of symptom onset of infector-infectee pairs.

Article and author information

Author details

  1. Ron Sender

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yinon Bar-On

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Sang Woo Park

    Department of Ecology and Evolutionary, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elad Noor

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8776-4799
  5. Jonathan Dushoff

    Department of Biology, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0506-4794
  6. Ron Milo

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    ron.milo@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1641-2299

Funding

Weizmann Institute of Science (The Weizmann CoronaVirus Fund)

  • Ron Milo

Weizmann Institute of Science (Weizmann Data Science Research Center,and by a research grant from the Estate of Tully and Michele)

  • Ron Sender

Canadian Institute for Health Research

  • Jonathan Dushoff

Ben B. and Joyce E. Eisenberg Foundation

  • Ron Milo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sender et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,227
    views
  • 309
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ron Sender
  2. Yinon Bar-On
  3. Sang Woo Park
  4. Elad Noor
  5. Jonathan Dushoff
  6. Ron Milo
(2022)
The unmitigated profile of COVID-19 infectiousness
eLife 11:e79134.
https://doi.org/10.7554/eLife.79134

Share this article

https://doi.org/10.7554/eLife.79134

Further reading

    1. Computational and Systems Biology
    Harlan P Stevens, Carly V Winegar ... Stephen R Piccolo
    Research Article

    To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.