The unmitigated profile of COVID-19 infectiousness

  1. Ron Sender
  2. Yinon Bar-On
  3. Sang Woo Park
  4. Elad Noor
  5. Jonathan Dushoff
  6. Ron Milo  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Princeton University, United States
  3. McMaster University, Canada

Abstract

Quantifying the temporal dynamics of infectiousness of individuals infected with SARS-CoV-2 is crucial for understanding the spread of COVID-19 and for evaluating the effectiveness of mitigation strategies. Many studies have estimated the infectiousness profile using observed serial intervals. However, statistical and epidemiological biases could lead to underestimation of the duration of infectiousness. We correct for these biases by curating data from the initial outbreak of the pandemic in China (when mitigation was minimal), and find that the infectiousness profile of the original strain is longer than previously thought. Sensitivity analysis shows our results are robust to model structure, assumed growth rate and potential observational biases. Although unmitigated transmission data is lacking for variants of concern (VOC), previous analyses suggest that the alpha and delta variants have faster within-host kinetics, which we extrapolate to crude estimates of variant-specific unmitigated generation intervals. Knowing the unmitigated infectiousness profile of infected individuals can inform estimates of the effectiveness of isolation and quarantine measures. The framework presented here can help design better quarantine policies in early stages of future epidemics.

Data availability

All study data are included in the article, SI appendix, and Dataset S1.All code is available in Jupyter notebooks found inhttps://gitlab.com/milo-lab-public/the-unmitigated-profile-of-covid-19-infectiousness

The following previously published data sets were used
    1. Wu et al
    (2020) Supplementary Table 8. Dates of symptom onset of infector-infectee pairs
    Supplementary Table 8. Dates of symptom onset of infector-infectee pairs.

Article and author information

Author details

  1. Ron Sender

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yinon Bar-On

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Sang Woo Park

    Department of Ecology and Evolutionary, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elad Noor

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8776-4799
  5. Jonathan Dushoff

    Department of Biology, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0506-4794
  6. Ron Milo

    Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    ron.milo@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1641-2299

Funding

Weizmann Institute of Science (The Weizmann CoronaVirus Fund)

  • Ron Milo

Weizmann Institute of Science (Weizmann Data Science Research Center,and by a research grant from the Estate of Tully and Michele)

  • Ron Sender

Canadian Institute for Health Research

  • Jonathan Dushoff

Ben B. and Joyce E. Eisenberg Foundation

  • Ron Milo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katelyn Gostic, University of Chicago, United States

Version history

  1. Preprint posted: November 19, 2021 (view preprint)
  2. Received: March 31, 2022
  3. Accepted: July 27, 2022
  4. Accepted Manuscript published: August 1, 2022 (version 1)
  5. Version of Record published: August 19, 2022 (version 2)

Copyright

© 2022, Sender et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,086
    views
  • 300
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ron Sender
  2. Yinon Bar-On
  3. Sang Woo Park
  4. Elad Noor
  5. Jonathan Dushoff
  6. Ron Milo
(2022)
The unmitigated profile of COVID-19 infectiousness
eLife 11:e79134.
https://doi.org/10.7554/eLife.79134

Share this article

https://doi.org/10.7554/eLife.79134

Further reading

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.