Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis

  1. Emma A Hall
  2. Dhivya Kumar
  3. Suzanna L Prosser
  4. Patricia L Yeyati
  5. Vicente Herranz-Pérez
  6. Jose Manuel García-Verdugo
  7. Lorraine Rose
  8. Lisa McKie
  9. Daniel O Dodd
  10. Peter A Tennant
  11. Roly Megaw
  12. Laura C Murphy
  13. Marisa F Ferreira
  14. Graeme Grimes
  15. Lucy Williams
  16. Tooba Quidwai
  17. Laurence Pelletier
  18. Jeremy F Reiter  Is a corresponding author
  19. Pleasantine Mill  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. University of California, San Francisco, United States
  3. Lunenfeld-Tanenbaum Research Institute, Canada
  4. University of Valencia, Spain

Abstract

Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar Material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. Pcm1-/- mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis. As many of these phenotypes have been observed in human ciliopathies and satellites are implicated in cilia biology, we investigated whether cilia were affected. PCM1 was dispensable for ciliogenesis in many cell types, whereas Pcm1-/- multiciliated ependymal cells and human PCM1-/- retinal pigmented epithelial 1 (RPE1) cells showed reduced ciliogenesis. PCM1-/- RPE1 cells displayed reduced docking of the mother centriole to the ciliary vesicle and removal of CP110 and CEP97 from the distal mother centriole, indicating compromised early ciliogenesis. Similarly, Pcm1-/- ependymal cells exhibited reduced removal of CP110 from basal bodies in vivo. We propose that PCM1 and centriolar satellites facilitate efficient trafficking of proteins to and from centrioles, including the departure of CP110 and CEP97 to initiate ciliogenesis, and that the threshold to trigger ciliogenesis differs between cell types.

Data availability

Proteomics data files are be uploaded ProteomeXchange (Identifier: PXD031920), with the accession number is available with the paper.All analysis tools have been made available on GitHub (https://github.com/IGC-Advanced-Imaging-Resource/Hall2022_Paper), as described in Materials and Methods.

The following data sets were generated

Article and author information

Author details

  1. Emma A Hall

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  2. Dhivya Kumar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3737-014X
  3. Suzanna L Prosser

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Patricia L Yeyati

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  5. Vicente Herranz-Pérez

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1969-1214
  6. Jose Manuel García-Verdugo

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    No competing interests declared.
  7. Lorraine Rose

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  8. Lisa McKie

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  9. Daniel O Dodd

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  10. Peter A Tennant

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  11. Roly Megaw

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5605-4540
  12. Laura C Murphy

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  13. Marisa F Ferreira

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8123-4612
  14. Graeme Grimes

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  15. Lucy Williams

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  16. Tooba Quidwai

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5248-9010
  17. Laurence Pelletier

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1171-4618
  18. Jeremy F Reiter

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jeremy.Reiter@ucsf.edu
    Competing interests
    Jeremy F Reiter, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6512-320X
  19. Pleasantine Mill

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    pleasantine.mill@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5218-134X

Funding

Medical Research Council (MR_UU_1201018/26)

  • Emma A Hall
  • Dhivya Kumar
  • Patricia L Yeyati
  • Lorraine Rose
  • Lisa McKie
  • Daniel O Dodd
  • Peter A Tennant
  • Roly Megaw
  • Laura C Murphy
  • Marisa F Ferreira
  • Graeme Grimes
  • Lucy Williams
  • Tooba Quidwai
  • Pleasantine Mill

Sandler Foundation

  • Dhivya Kumar

Krembil Foundation

  • Suzanna L Prosser
  • Laurence Pelletier

European Commission (866355)

  • Emma A Hall
  • Daniel O Dodd
  • Pleasantine Mill

Canadian Institutes of Health Research (167279)

  • Suzanna L Prosser
  • Laurence Pelletier

European Commission (702601)

  • Suzanna L Prosser

National Institutes of Health (R01GM095941)

  • Dhivya Kumar
  • Vicente Herranz-Pérez
  • Jose Manuel García-Verdugo
  • Jeremy F Reiter

National Institutes of Health (R01AR054396)

  • Dhivya Kumar
  • Vicente Herranz-Pérez
  • Jose Manuel García-Verdugo
  • Jeremy F Reiter

National Institutes of Health (RO1HD089918)

  • Dhivya Kumar
  • Vicente Herranz-Pérez
  • Jose Manuel García-Verdugo
  • Jeremy F Reiter

National Institutes of Health (5K99GM140175)

  • Dhivya Kumar

Jane Coffin Childs Memorial Fund for Medical Research

  • Dhivya Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were maintained in SPF environment and studies carried out in accordance with the guidance issued by the Medical Research Council in "Responsibility in the Use of Animals in Medical Research" (July 1993) and licensed by the Home Office under the Animals (Scientific Procedures) Act 1986 under project license number P18921CDE in facilities at the University of Edinburgh (PEL 60/6025).

Reviewing Editor

  1. Lotte B Pedersen, University of Copenhagen, Denmark

Publication history

  1. Preprint posted: April 4, 2022 (view preprint)
  2. Received: April 6, 2022
  3. Accepted: February 14, 2023
  4. Accepted Manuscript published: February 15, 2023 (version 1)
  5. Version of Record published: March 9, 2023 (version 2)

Copyright

© 2023, Hall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,540
    Page views
  • 339
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma A Hall
  2. Dhivya Kumar
  3. Suzanna L Prosser
  4. Patricia L Yeyati
  5. Vicente Herranz-Pérez
  6. Jose Manuel García-Verdugo
  7. Lorraine Rose
  8. Lisa McKie
  9. Daniel O Dodd
  10. Peter A Tennant
  11. Roly Megaw
  12. Laura C Murphy
  13. Marisa F Ferreira
  14. Graeme Grimes
  15. Lucy Williams
  16. Tooba Quidwai
  17. Laurence Pelletier
  18. Jeremy F Reiter
  19. Pleasantine Mill
(2023)
Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis
eLife 12:e79299.
https://doi.org/10.7554/eLife.79299

Further reading

    1. Cell Biology
    Sandipan Dasgupta, Daniella Y Dayagi ... Jeffrey E Gerst
    Research Article

    Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an in vitro human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically, <1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions.

    1. Cell Biology
    Jini Sugatha, Amulya Priya ... Sunando Datta
    Research Article Updated

    Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild-type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In neuroglial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32-depleted cells led us to propose that SNX32 may contribute to maintaining the neuroglial coordination via its role in BSG trafficking and the associated monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.