Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis

Abstract

Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar Material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. Pcm1-/- mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis. As many of these phenotypes have been observed in human ciliopathies and satellites are implicated in cilia biology, we investigated whether cilia were affected. PCM1 was dispensable for ciliogenesis in many cell types, whereas Pcm1-/- multiciliated ependymal cells and human PCM1-/- retinal pigmented epithelial 1 (RPE1) cells showed reduced ciliogenesis. PCM1-/- RPE1 cells displayed reduced docking of the mother centriole to the ciliary vesicle and removal of CP110 and CEP97 from the distal mother centriole, indicating compromised early ciliogenesis. Similarly, Pcm1-/- ependymal cells exhibited reduced removal of CP110 from basal bodies in vivo. We propose that PCM1 and centriolar satellites facilitate efficient trafficking of proteins to and from centrioles, including the departure of CP110 and CEP97 to initiate ciliogenesis, and that the threshold to trigger ciliogenesis differs between cell types.

Data availability

Proteomics data files are be uploaded ProteomeXchange (Identifier: PXD031920), with the accession number is available with the paper.All analysis tools have been made available on GitHub (https://github.com/IGC-Advanced-Imaging-Resource/Hall2022_Paper), as described in Materials and Methods.

The following data sets were generated

Article and author information

Author details

  1. Emma A Hall

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  2. Dhivya Kumar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3737-014X
  3. Suzanna L Prosser

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Patricia L Yeyati

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  5. Vicente Herranz-Pérez

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1969-1214
  6. Jose Manuel García-Verdugo

    Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
    Competing interests
    No competing interests declared.
  7. Lorraine Rose

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  8. Lisa McKie

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  9. Daniel O Dodd

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  10. Peter A Tennant

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  11. Roly Megaw

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5605-4540
  12. Laura C Murphy

    Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  13. Marisa F Ferreira

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8123-4612
  14. Graeme Grimes

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  15. Lucy Williams

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  16. Tooba Quidwai

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5248-9010
  17. Laurence Pelletier

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1171-4618
  18. Jeremy F Reiter

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jeremy.Reiter@ucsf.edu
    Competing interests
    Jeremy F Reiter, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6512-320X
  19. Pleasantine Mill

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    pleasantine.mill@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5218-134X

Funding

Medical Research Council (MR_UU_1201018/26)

  • Emma A Hall
  • Dhivya Kumar
  • Patricia L Yeyati
  • Lorraine Rose
  • Lisa McKie
  • Daniel O Dodd
  • Peter A Tennant
  • Roly Megaw
  • Laura C Murphy
  • Marisa F Ferreira
  • Graeme Grimes
  • Lucy Williams
  • Tooba Quidwai
  • Pleasantine Mill

Sandler Foundation

  • Dhivya Kumar

Krembil Foundation

  • Suzanna L Prosser
  • Laurence Pelletier

European Commission (866355)

  • Emma A Hall
  • Daniel O Dodd
  • Pleasantine Mill

Canadian Institutes of Health Research (167279)

  • Suzanna L Prosser
  • Laurence Pelletier

European Commission (702601)

  • Suzanna L Prosser

National Institutes of Health (R01GM095941)

  • Dhivya Kumar
  • Vicente Herranz-Pérez
  • Jose Manuel García-Verdugo
  • Jeremy F Reiter

National Institutes of Health (R01AR054396)

  • Dhivya Kumar
  • Vicente Herranz-Pérez
  • Jose Manuel García-Verdugo
  • Jeremy F Reiter

National Institutes of Health (RO1HD089918)

  • Dhivya Kumar
  • Vicente Herranz-Pérez
  • Jose Manuel García-Verdugo
  • Jeremy F Reiter

National Institutes of Health (5K99GM140175)

  • Dhivya Kumar

Jane Coffin Childs Memorial Fund for Medical Research

  • Dhivya Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lotte B Pedersen, University of Copenhagen, Denmark

Ethics

Animal experimentation: Animals were maintained in SPF environment and studies carried out in accordance with the guidance issued by the Medical Research Council in "Responsibility in the Use of Animals in Medical Research" (July 1993) and licensed by the Home Office under the Animals (Scientific Procedures) Act 1986 under project license number P18921CDE in facilities at the University of Edinburgh (PEL 60/6025).

Version history

  1. Preprint posted: April 4, 2022 (view preprint)
  2. Received: April 6, 2022
  3. Accepted: February 14, 2023
  4. Accepted Manuscript published: February 15, 2023 (version 1)
  5. Version of Record published: March 9, 2023 (version 2)

Copyright

© 2023, Hall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,607
    views
  • 492
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma A Hall
  2. Dhivya Kumar
  3. Suzanna L Prosser
  4. Patricia L Yeyati
  5. Vicente Herranz-Pérez
  6. Jose Manuel García-Verdugo
  7. Lorraine Rose
  8. Lisa McKie
  9. Daniel O Dodd
  10. Peter A Tennant
  11. Roly Megaw
  12. Laura C Murphy
  13. Marisa F Ferreira
  14. Graeme Grimes
  15. Lucy Williams
  16. Tooba Quidwai
  17. Laurence Pelletier
  18. Jeremy F Reiter
  19. Pleasantine Mill
(2023)
Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis
eLife 12:e79299.
https://doi.org/10.7554/eLife.79299

Share this article

https://doi.org/10.7554/eLife.79299

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.