Evolutionary rescue of phosphomannomutase deficiency in yeast models of human disease

  1. Ryan C Vignogna
  2. Mariateresa Allocca
  3. Maria Monticelli
  4. Joy W Norris
  5. Richard Steet
  6. Ethan O Perlstein
  7. Giuseppina Andreotti  Is a corresponding author
  8. Gregory I Lang  Is a corresponding author
  1. Lehigh University, United States
  2. National Research Council, Italy
  3. Greenwood Genetic Center, United States
  4. Perlara PBC, United States

Abstract

The most common cause of human congenital disorders of glycosylation (CDG) are mutations in the phosphomannomutase gene PMM2, which affect protein N-linked glycosylation. The yeast gene SEC53 encodes a homolog of human PMM2. We evolved 384 populations of yeast harboring one of two human-disease-associated alleles, sec53-V238M and sec53-F126L, or wild-type SEC53. We find that after 1,000 generations, most populations compensate for the slow-growth phenotype associated with the sec53 human-disease-associated alleles. Through whole-genome sequencing we identify compensatory mutations, including known SEC53 genetic interactors. We observe an enrichment of compensatory mutations in other genes whose human homologs are associated with Type 1 CDG, including PGM1, which encodes the minor isoform of phosphoglucomutase in yeast. By genetic reconstruction, we show that evolved pgm1 mutations are dominant and allele-specific genetic interactors that restore both protein glycosylation and growth of yeast harboring the sec53-V238M allele. Finally, we characterize the enzymatic activity of purified Pgm1 mutant proteins. We find that reduction, but not elimination, of Pgm1 activity best compensates for the deleterious phenotypes associated with the sec53-V238M allele. Broadly, our results demonstrate the power of experimental evolution as a tool for identifying genes and pathways that compensate for human-disease associated alleles.

Data availability

The short-read sequencing data reported in this study have been deposited to the NCBI BioProject database, accession number PRJNA784975.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ryan C Vignogna

    Department of Biological Sciences, Lehigh University, Bethlehem, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5943-6464
  2. Mariateresa Allocca

    Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3693-2515
  3. Maria Monticelli

    Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
    Competing interests
    No competing interests declared.
  4. Joy W Norris

    Research Division, Greenwood Genetic Center, Greenwood, United States
    Competing interests
    No competing interests declared.
  5. Richard Steet

    Research Division, Greenwood Genetic Center, Greenwood, United States
    Competing interests
    No competing interests declared.
  6. Ethan O Perlstein

    Perlara PBC, Berkeley, United States
    Competing interests
    Ethan O Perlstein, is CEO of Maggie's Pearl, LLC and CEO of Perlara PBC. He holds an ownership stake in both companies..
  7. Giuseppina Andreotti

    Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
    For correspondence
    gandreotti@icb.cnr.it
    Competing interests
    No competing interests declared.
  8. Gregory I Lang

    Department of Biological Sciences, Lehigh University, Bethlehem, United States
    For correspondence
    glang@lehigh.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7931-0428

Funding

National Institutes of Health (R01GM127420)

  • Gregory I Lang

National Institutes of Health (P20GM139769)

  • Richard Steet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, University College London, United Kingdom

Version history

  1. Received: April 7, 2022
  2. Preprint posted: April 8, 2022 (view preprint)
  3. Accepted: October 7, 2022
  4. Accepted Manuscript published: October 10, 2022 (version 1)
  5. Version of Record published: October 18, 2022 (version 2)

Copyright

© 2022, Vignogna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,162
    views
  • 155
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan C Vignogna
  2. Mariateresa Allocca
  3. Maria Monticelli
  4. Joy W Norris
  5. Richard Steet
  6. Ethan O Perlstein
  7. Giuseppina Andreotti
  8. Gregory I Lang
(2022)
Evolutionary rescue of phosphomannomutase deficiency in yeast models of human disease
eLife 11:e79346.
https://doi.org/10.7554/eLife.79346

Share this article

https://doi.org/10.7554/eLife.79346

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.