Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single cell resolution
Abstract
Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single cell RNA sequencing (scRNAseq) to characterize an enriched population of human hematopoietic stem and progenitor cells (HSPCs) obtained from young and elderly healthy individuals. Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain age-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and gene regulatory networks (GRN) regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2 and RUNX1 suggesting a role of these TF in the pathogenesis of the disease. In summary, we demonstrate that the combination of single cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.
Data availability
All the single cell RNA sequencing data is available at Gene Expression Omnibus under accession number GSE180298. The scripts needed to replicate the analysis are deposited on GitHub:https://github.com/mainciburu/scRNA-Hematopoiesis
-
Single-cell, multi-omic analysis identifies regulatory programs in mixed phenotype acute leukemiaNCBI Gene Expression Omnibus, GSE139369.
Article and author information
Author details
Funding
Instituto de Salud Carlos III
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Ministerio de Ciencia e Innovación (PhD fellowship FPU18/05488)
- Marina Ainciburu
Fundación Científica Asociación Española Contra el Cáncer (Investigador AECC award)
- Teresa Ezponda
H2020 Marie Skłodowska-Curie Actions (Grant Agreement No. 898356)
- Mikel Hernaez
Federación Española de Enfermedades Raras (PI17/00701,PI19/00726 and PI20/01308)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Centro de Investigación Biomédica en Red de Cáncer (CB16/12/00489 and CB16/12/00225)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Gobierno de Navarra (ERAPerMed MEET-AML 0011-2750-2019-000001; AGATA 0011-1411-2020-000010/0011-1411-2020-000011 and DIAN)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
la Caixa" Foundation " (GR-NET NORMAL-HIT HR20-00871)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Cancer Research UK (C355/A26819)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Fundación Científica Asociación Española Contra el Cáncer (Accelerator Award Program)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Associazione Italiana per la Ricerca sul Cancro (Accelerator Award Program)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Gobierno de Navarra (PhD fellowship 0011-0537-2019-000001)
- Nerea Berastegui
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The samples and data from the patients included in the study were provided by the Biobank of the University of Navarra and were processed according to standard operating procedures. Patients and healthy donors provided informed consent, together with consent for publication. The study was approved by the Clinical Research Ethics Committee of the Clinica Universidad de Navarra, following protocol # 2017.218.
Copyright
© 2023, Ainciburu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,303
- views
-
- 584
- downloads
-
- 28
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Genetics and Genomics
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
-
- Computational and Systems Biology
Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.