Abstract

Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single cell RNA sequencing (scRNAseq) to characterize an enriched population of human hematopoietic stem and progenitor cells (HSPCs) obtained from young and elderly healthy individuals. Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain age-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and gene regulatory networks (GRN) regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2 and RUNX1 suggesting a role of these TF in the pathogenesis of the disease. In summary, we demonstrate that the combination of single cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.

Data availability

All the single cell RNA sequencing data is available at Gene Expression Omnibus under accession number GSE180298. The scripts needed to replicate the analysis are deposited on GitHub:https://github.com/mainciburu/scRNA-Hematopoiesis

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marina Ainciburu

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    For correspondence
    mainciburu@alumni.unav.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6483-1901
  2. Teresa Ezponda

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  3. Nerea Berastegui

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  4. Ana Alfonso-Pierola

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  5. Amaia Vilas-Zornoza

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  6. Patxi San Martin-Uriz

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  7. Diego Alignani

    Flow Cytometry Core, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  8. Jose Lamo de Espinosa

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  9. Mikel San Julian

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  10. Tamara Jiménez Solas

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5894-2023
  11. Felix Lopez

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  12. Sandra Muntion

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  13. Fermin Sanchez-Guijo

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  14. Antonieta Molero

    Department of Hematology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
    Competing interests
    No competing interests declared.
  15. Julia Montoro

    Department of Hematology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
    Competing interests
    No competing interests declared.
  16. Guillermo Serrano

    Computational Biology Program, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  17. Aintzane Diaz-Mazkiaran

    Computational Biology Program, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  18. Miren Lasaga

    Translational Bioinformatics Unit, NavarraBiomed, Pamplona, Spain
    Competing interests
    No competing interests declared.
  19. David Gomez-Cabrero

    Translational Bioinformatics Unit, NavarraBiomed, Pamplona, Spain
    Competing interests
    No competing interests declared.
  20. Maria Diez-Campelo

    Hospital Universitario de Salamanca, Salamanca, Spain
    Competing interests
    No competing interests declared.
  21. David Valcarcel

    Department of Hematology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
    Competing interests
    No competing interests declared.
  22. Mikel Hernaez

    Computational Biology Program, Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  23. Juan Pablo Romero

    Area de Hemato-Oncología, Universidad de Navarra, Pamplona, Spain
    Competing interests
    Juan Pablo Romero, Employed by 10x Genomics since February 2021; this employment had no bearing on this work.
  24. Felipe Prosper

    Clinica Universidad de Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6115-8790

Funding

Instituto de Salud Carlos III

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Ministerio de Ciencia e Innovación (PhD fellowship FPU18/05488)

  • Marina Ainciburu

Fundación Científica Asociación Española Contra el Cáncer (Investigador AECC award)

  • Teresa Ezponda

H2020 Marie Skłodowska-Curie Actions (Grant Agreement No. 898356)

  • Mikel Hernaez

Federación Española de Enfermedades Raras (PI17/00701,PI19/00726 and PI20/01308)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Centro de Investigación Biomédica en Red de Cáncer (CB16/12/00489 and CB16/12/00225)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Gobierno de Navarra (ERAPerMed MEET-AML 0011-2750-2019-000001; AGATA 0011-1411-2020-000010/0011-1411-2020-000011 and DIAN)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

la Caixa" Foundation " (GR-NET NORMAL-HIT HR20-00871)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Cancer Research UK (C355/A26819)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Fundación Científica Asociación Española Contra el Cáncer (Accelerator Award Program)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Associazione Italiana per la Ricerca sul Cancro (Accelerator Award Program)

  • Marina Ainciburu
  • Teresa Ezponda
  • Nerea Berastegui
  • Ana Alfonso-Pierola
  • Amaia Vilas-Zornoza
  • Patxi San Martin-Uriz
  • Diego Alignani
  • Jose Lamo de Espinosa
  • Mikel San Julian
  • Tamara Jiménez Solas
  • Felix Lopez
  • Sandra Muntion
  • Fermin Sanchez-Guijo
  • Antonieta Molero
  • Julia Montoro
  • Guillermo Serrano
  • Aintzane Diaz-Mazkiaran
  • Miren Lasaga
  • David Gomez-Cabrero
  • Maria Diez-Campelo
  • David Valcarcel
  • Mikel Hernaez
  • Juan Pablo Romero
  • Felipe Prosper

Gobierno de Navarra (PhD fellowship 0011-0537-2019-000001)

  • Nerea Berastegui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The samples and data from the patients included in the study were provided by the Biobank of the University of Navarra and were processed according to standard operating procedures. Patients and healthy donors provided informed consent, together with consent for publication. The study was approved by the Clinical Research Ethics Committee of the Clinica Universidad de Navarra, following protocol # 2017.218.

Copyright

© 2023, Ainciburu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,303
    views
  • 584
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Ainciburu
  2. Teresa Ezponda
  3. Nerea Berastegui
  4. Ana Alfonso-Pierola
  5. Amaia Vilas-Zornoza
  6. Patxi San Martin-Uriz
  7. Diego Alignani
  8. Jose Lamo de Espinosa
  9. Mikel San Julian
  10. Tamara Jiménez Solas
  11. Felix Lopez
  12. Sandra Muntion
  13. Fermin Sanchez-Guijo
  14. Antonieta Molero
  15. Julia Montoro
  16. Guillermo Serrano
  17. Aintzane Diaz-Mazkiaran
  18. Miren Lasaga
  19. David Gomez-Cabrero
  20. Maria Diez-Campelo
  21. David Valcarcel
  22. Mikel Hernaez
  23. Juan Pablo Romero
  24. Felipe Prosper
(2023)
Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single cell resolution
eLife 12:e79363.
https://doi.org/10.7554/eLife.79363

Share this article

https://doi.org/10.7554/eLife.79363

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.