Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single cell resolution
Abstract
Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single cell RNA sequencing (scRNAseq) to characterize an enriched population of human hematopoietic stem and progenitor cells (HSPCs) obtained from young and elderly healthy individuals. Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain age-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and gene regulatory networks (GRN) regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2 and RUNX1 suggesting a role of these TF in the pathogenesis of the disease. In summary, we demonstrate that the combination of single cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.
Data availability
All the single cell RNA sequencing data is available at Gene Expression Omnibus under accession number GSE180298. The scripts needed to replicate the analysis are deposited on GitHub:https://github.com/mainciburu/scRNA-Hematopoiesis
-
Single-cell, multi-omic analysis identifies regulatory programs in mixed phenotype acute leukemiaNCBI Gene Expression Omnibus, GSE139369.
Article and author information
Author details
Funding
Instituto de Salud Carlos III
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Ministerio de Ciencia e Innovación (PhD fellowship FPU18/05488)
- Marina Ainciburu
Fundación Científica Asociación Española Contra el Cáncer (Investigador AECC award)
- Teresa Ezponda
H2020 Marie Skłodowska-Curie Actions (Grant Agreement No. 898356)
- Mikel Hernaez
Federación Española de Enfermedades Raras (PI17/00701,PI19/00726 and PI20/01308)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Centro de Investigación Biomédica en Red de Cáncer (CB16/12/00489 and CB16/12/00225)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Gobierno de Navarra (ERAPerMed MEET-AML 0011-2750-2019-000001; AGATA 0011-1411-2020-000010/0011-1411-2020-000011 and DIAN)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
la Caixa" Foundation " (GR-NET NORMAL-HIT HR20-00871)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Cancer Research UK (C355/A26819)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Fundación Científica Asociación Española Contra el Cáncer (Accelerator Award Program)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Associazione Italiana per la Ricerca sul Cancro (Accelerator Award Program)
- Marina Ainciburu
- Teresa Ezponda
- Nerea Berastegui
- Ana Alfonso-Pierola
- Amaia Vilas-Zornoza
- Patxi San Martin-Uriz
- Diego Alignani
- Jose Lamo de Espinosa
- Mikel San Julian
- Tamara Jiménez Solas
- Felix Lopez
- Sandra Muntion
- Fermin Sanchez-Guijo
- Antonieta Molero
- Julia Montoro
- Guillermo Serrano
- Aintzane Diaz-Mazkiaran
- Miren Lasaga
- David Gomez-Cabrero
- Maria Diez-Campelo
- David Valcarcel
- Mikel Hernaez
- Juan Pablo Romero
- Felipe Prosper
Gobierno de Navarra (PhD fellowship 0011-0537-2019-000001)
- Nerea Berastegui
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The samples and data from the patients included in the study were provided by the Biobank of the University of Navarra and were processed according to standard operating procedures. Patients and healthy donors provided informed consent, together with consent for publication. The study was approved by the Clinical Research Ethics Committee of the Clinica Universidad de Navarra, following protocol # 2017.218.
Reviewing Editor
- Jiwon Shim, Hanyang University, Republic of Korea
Publication history
- Received: April 8, 2022
- Accepted: January 10, 2023
- Accepted Manuscript published: January 11, 2023 (version 1)
Copyright
© 2023, Ainciburu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 356
- Page views
-
- 135
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data is typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n=12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n=2) during an instrumental task from calcium fluorescence in orbitofrontal cortex (OFC). DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array (FPGA) hardware for real time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.
-
- Computational and Systems Biology
- Immunology and Inflammation
High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies is still challenging. Here we discovered a hallmark anomaly in the ratio between read count and clone count-based frequencies of non-functional clonotypes in multiplex PCR-based immune repertoires. Calculating this anomaly, we formulated a quantitative measure of V- and J-genes frequency bias driven by multiplex PCR during library preparation called Over Amplification Rate (OAR). Based on the OAR concept, we developed an original software for multiplex PCR-specific bias evaluation and correction named iROAR: Immune Repertoire Over Amplification Removal (https://github.com/smiranast/iROAR). The iROAR algorithm was successfully tested on previously published TCR repertoires obtained using both 5' RACE (Rapid Amplification of cDNA Ends)-based and multiplex PCR-based approaches and compared with a biological spike-in-based method for PCR bias evaluation. The developed approach can increase the accuracy and consistency of repertoires reconstructed by different methods making them more applicable for comparative analysis.