Whole-brain comparison of rodent and human brains using spatial transcriptomics

  1. Antoine Beauchamp  Is a corresponding author
  2. Yohan Yee
  3. Benjamin C Darwin
  4. Armin Raznahan
  5. Rogier B Mars  Is a corresponding author
  6. Jason P Lerch  Is a corresponding author
  1. University of Toronto, Canada
  2. Mouse Imaging Centre, Canada
  3. Hospital for Sick Children, Canada
  4. National Institute of Mental Health, United States
  5. Radboud University Nijmegen, Netherlands
  6. University of Oxford, United Kingdom

Abstract

The ever-increasing use of mouse models in preclinical neuroscience research calls for an improvement in the methods used to translate findings between mouse and human brains. Previously we showed that the brains of primates can be compared in a direct quantitative manner using a common reference space built from white matter tractography data (Rogier B. Mars et al., 2018b). Here we extend the common space approach to evaluate the similarity of mouse and human brain regions using openly accessible brain-wide transcriptomic data sets. We show that mouse-human homologous genes capture broad patterns of neuroanatomical organization, but that the resolution of cross-species correspondences can be improved using a novel supervised machine learning approach. Using this method, we demonstrate that sensorimotor subdivisions of the neocortex exhibit greater similarity between species, compared with supramodal subdivisions, and that mouse isocortical regions separate into sensorimotor and supramodal clusters based on their similarity to human cortical regions. We also find that mouse and human striatal regions are strongly conserved, with the mouse caudoputamen exhibiting an equal degree of similarity to both the human caudate and putamen.

Data availability

The Allen Mouse Brain Atlas and Allen Human Brain Atlas data sets are openly accessible and can be downloaded from the Allen Institute's API (http://api.brain-map.org). All of the code and additional data needed to generate this analysis, including figures and manuscript, is accessible at https://github.com/abeaucha/MouseHumanTranscriptomicSimilarity/

The following previously published data sets were used

Article and author information

Author details

  1. Antoine Beauchamp

    Department of Medical Biophysics, University of Toronto, Toronto, Canada
    For correspondence
    antoine.beauchamp@mail.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0008-7471
  2. Yohan Yee

    Mouse Imaging Centre, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7083-1932
  3. Benjamin C Darwin

    Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8689-046X
  4. Armin Raznahan

    Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5622-1190
  5. Rogier B Mars

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    rogier.mars@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  6. Jason P Lerch

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    jason.lerch@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Canadian Institutes of Health Research (Doctoral Award - Frederick Banting and Charles Best Canada Graduate Scholarships (GSD-165737))

  • Antoine Beauchamp

Wellcome Trust (203139/Z/16/Z)

  • Rogier B Mars
  • Jason P Lerch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,682
    views
  • 585
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antoine Beauchamp
  2. Yohan Yee
  3. Benjamin C Darwin
  4. Armin Raznahan
  5. Rogier B Mars
  6. Jason P Lerch
(2022)
Whole-brain comparison of rodent and human brains using spatial transcriptomics
eLife 11:e79418.
https://doi.org/10.7554/eLife.79418

Share this article

https://doi.org/10.7554/eLife.79418

Further reading

    1. Evolutionary Biology
    Lin Chao, Chun Kuen Chan ... Ulla Camilla Rang
    Research Article

    Lineages of rod-shaped bacteria such as Escherichia coli exhibit a temporal decline in elongation rate in a manner comparable to cellular or biological aging. The effect results from the production of asymmetrical daughters, one with a lower elongation rate, by the division of a mother cell. The slower daughter compared to the faster daughter, denoted respectively as the old and new daughters, has more aggregates of damaged proteins and fewer expressed gene products. We have examined further the degree of asymmetry by measuring the density of ribosomes between old and new daughters and between their poles. We found that ribosomes were denser in the new daughter and also in the new pole of the daughters. These ribosome patterns match the ones we previously found for expressed gene products. This outcome suggests that the asymmetry is not likely to result from properties unique to the gene expressed in our previous study, but rather from a more fundamental upstream process affecting the distribution of ribosomal abundance. Because damage aggregates and ribosomes are both more abundant at the poles of E. coli cells, we suggest that competition for space between the two could explain the reduced ribosomal density in old daughters. Using published values for aggregate sizes and the relationship between ribosomal number and elongation rates, we show that the aggregate volumes could in principle displace quantitatively the amount of ribosomes needed to reduce the elongation rate of the old daughters.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.