Abstract

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron dysfunction and loss. A portion of ALS cases are caused by mutation of the proteasome shuttle factor Ubiquilin 2 (UBQLN2), but the molecular pathway leading from UBQLN2 dysfunction to disease remains unclear. Here, we demonstrate that UBQLN2 regulates the domesticated gag-pol retrotransposon 'paternally expressed gene 10' (PEG10) in human cells and tissues. In cells, the PEG10 gag-pol protein cleaves itself in a mechanism reminiscent of retrotransposon self-processing to generate a liberated 'nucleocapsid' fragment, which uniquely localizes to the nucleus and changes the expression of genes involved in axon remodeling. In spinal cord tissue from ALS patients, PEG10 gag-pol is elevated compared to healthy controls. These findings implicate the retrotransposon-like activity of PEG10 as a contributing mechanism in ALS through regulation of gene expression, and restraint of PEG10 as a primary function of UBQLN2.

Data availability

Figure 6 - Source Data 1 contains the normalized counts from RNA-Seq data used to generate figures. Figure 8 - Source Data 1 contains the abundance counts from proteomics data used to generate figures. Sequencing data have been deposited in the Gene Expression Omnibus (GEO) at GSE227789. Proteomics data is available on PRIDE at PXD031964. Analysis code for microscopy quantitation can be obtained from https://github.com/jwtay1/PEG10-image-analysis/. All other data is available in the manuscript or source materials. Correspondence and material requests should be directed to A. M. Whiteley (alexandra.whiteley@colorado.edu).

The following data sets were generated

Article and author information

Author details

  1. Holly H Black

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1383-136X
  2. Jessica L Hanson

    Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  3. Julia E Roberts

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  4. Shannon N Leslie

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  5. Will Campodonico

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9098-5266
  6. Christopher C Ebmeier

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7940-6190
  7. G Aaron Holling

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  8. Jian Wei Tay

    Biofrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8634-5039
  9. Autumn M Matthews

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  10. Elizabeth Ung

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  11. Cristina I Lau

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0850-9963
  12. Alexandra Whiteley

    Department of Biochemistry, University of Colorado Boulder, Boulder, United States
    For correspondence
    alexandra.whiteley@colorado.edu
    Competing interests
    Alexandra Whiteley, The University of Colorado, Boulder, has a patent pending for the use of PEG10 inhibitors on which the author is an inventor..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4144-7605

Funding

National Institute of General Medical Sciences (T32GM142607)

  • Julia E Roberts
  • Autumn M Matthews

National Cancer Institute (T32CA174648)

  • G Aaron Holling

Biological Sciences Initiative

  • Elizabeth Ung
  • Cristina I Lau

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Harry T Orr, University of Minnesota, United States

Version history

  1. Preprint posted: March 27, 2022 (view preprint)
  2. Received: April 13, 2022
  3. Accepted: March 15, 2023
  4. Accepted Manuscript published: March 23, 2023 (version 1)
  5. Version of Record published: April 5, 2023 (version 2)

Copyright

© 2023, Black et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,690
    views
  • 304
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Holly H Black
  2. Jessica L Hanson
  3. Julia E Roberts
  4. Shannon N Leslie
  5. Will Campodonico
  6. Christopher C Ebmeier
  7. G Aaron Holling
  8. Jian Wei Tay
  9. Autumn M Matthews
  10. Elizabeth Ung
  11. Cristina I Lau
  12. Alexandra Whiteley
(2023)
UBQLN2 restrains the domesticated retrotransposon PEG10 to maintain neuronal health in ALS
eLife 12:e79452.
https://doi.org/10.7554/eLife.79452

Share this article

https://doi.org/10.7554/eLife.79452

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.