The evolution of a counter-defense mechanism in a virus constrains its host range

  1. Sriram Srikant
  2. Chantal K Guegler
  3. Michael T Laub  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Howard Hughes Medical Institute, Massachusetts Institute of Technology, United States

Abstract

Bacteria use diverse immunity mechanisms to defend themselves against their viral predators, bacteriophages. In turn, phages can acquire counter-defense systems, but it remains unclear how such mechanisms arise and what factors constrain viral evolution. Here, we experimentally evolved T4 phage to overcome a phage-defensive toxin-antitoxin system, toxIN, in E. coli. Through recombination, T4 rapidly acquires segmental amplifications of a previously uncharacterized gene, now named tifA, encoding an inhibitor of the toxin, ToxN. These amplifications subsequently drive large deletions elsewhere in T4's genome to maintain a genome size compatible with capsid packaging. The deleted regions include accessory genes that help T4 overcome defense systems in alternative hosts. Thus, our results reveal a trade-off in viral evolution; the emergence of one counter-defense mechanism can lead to loss of other such mechanisms, thereby constraining host range. We propose that the accessory genomes of viruses reflect the integrated evolutionary history of the hosts they infected.

Data availability

DNA sequencing data is available at SRA (BioProject ID: PRJNA824875).

The following data sets were generated

Article and author information

Author details

  1. Sriram Srikant

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3904-0336
  2. Chantal K Guegler

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Michael T Laub

    Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    laub@mit.edu
    Competing interests
    Michael T Laub, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8288-7607

Funding

Howard Hughes Medical Institute

  • Michael T Laub

National Science Foundation (Graduate Research Fellowship)

  • Chantal K Guegler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melanie Blokesch, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Preprint posted: April 14, 2022 (view preprint)
  2. Received: April 17, 2022
  3. Accepted: August 3, 2022
  4. Accepted Manuscript published: August 4, 2022 (version 1)
  5. Version of Record published: August 19, 2022 (version 2)

Copyright

© 2022, Srikant et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,799
    Page views
  • 754
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sriram Srikant
  2. Chantal K Guegler
  3. Michael T Laub
(2022)
The evolution of a counter-defense mechanism in a virus constrains its host range
eLife 11:e79549.
https://doi.org/10.7554/eLife.79549

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Alex Mas Sandoval, Sara Mathieson, Matteo Fumagalli
    Research Article

    Cultural and socioeconomic differences stratify human societies and shape their genetic structure beyond the sole effect of geography. Despite mating being limited by sociocultural stratification, most demographic models in population genetics often assume random mating. Taking advantage of the correlation between sociocultural stratification and the proportion of genetic ancestry in admixed populations, we sought to infer the former process in the Americas. To this aim, we define a mating model where the individual proportions of the genome inherited from Native American, European and sub-Saharan African ancestral populations constrain the mating probabilities through ancestry-related assortative mating and sex bias parameters. We simulate a wide range of admixture scenarios under this model. Then, we train a deep neural network and retrieve good performance in predicting mating parameters from genomic data. Our results show how population stratification shaped by socially constructed racial and gender hierarchies have constrained the admixture processes in the Americas since the European colonisation and the subsequent Atlantic slave trade.

    1. Ecology
    2. Evolutionary Biology
    Hannah J Williams, Vivek H Sridhar ... Amanda D Melin
    Review Article

    Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a ‘sensory collective’; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify ‘sensescapes’. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.