Predicting mechanisms of action at genetic loci associated with discordant effects on type 2 diabetes and abdominal fat accumulation

  1. Yonathan Tamrat Aberra  Is a corresponding author
  2. Lijiang Ma
  3. Johan LM Björkegren
  4. Mete Civelek  Is a corresponding author
  1. University of Virginia, United States
  2. Icahn School of Medicine at Mount Sinai, United States

Abstract

Metabolic syndrome (MetSyn) is a cluster of dysregulated metabolic conditions that occur together to increase the risk for cardiometabolic disorders such as type 2 diabetes (T2D). One key condition associated with MetSyn, abdominal obesity, is measured by computing the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI). WHRadjBMI and T2D are complex traits with genetic and environmental components, which has enabled genome-wide association studies (GWAS) to identify hundreds of loci associated with both. Statistical genetics analyses of these GWAS have predicted that WHRadjBMI is a strong causal risk factor of T2D and that these traits share genetic architecture at many loci. To date, no variants have been described that are simultaneously associated with protection from T2D but with increased abdominal obesity. Here, we used colocalization analysis to identify genetic variants with a shared association for T2D and abdominal obesity. This analysis revealed the presence of five loci associated with discordant effects on T2D and abdominal obesity. The alleles of the lead genetic variants in these loci that were protective against T2D were also associated with increased abdominal obesity. We further used publicly available expression, epigenomic, and genetic regulatory data to predict the effector genes (eGenes) and functional tissues at the 2p21, 5q21.1, and 19q13.11 loci. We also computed the correlation between the subcutaneous adipose tissue (SAT) expression of predicted effector genes (eGenes) with metabolic phenotypes and adipogenesis. We proposed a model to resolve the discordant effects at the 5q21.1 locus. We find that eGenes gypsy retrotransposon integrase 1 (GIN1), diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2), and peptidylglycine alpha-amidating monooxygenase (PAM) represent the likely causal eGenes at the 5q21.1 locus. Taken together, these results are the first to describe a potential mechanism through which a genetic variant can confer increased abdominal obesity but protection from T2D risk. Understanding precisely how and which genetic variants confer increased risk for MetSyn will develop the basic science needed to design novel therapeutics for metabolic syndrome.

Data availability

The current manuscript is a computational investigation using publicly available data, so no data have been generated for this manuscript. All publicly obtained data sets are included in Supplementary Table 1. All analysis and figure-generating code uploaded to the following Github repository: https://github.com/aberrations/predicting-functional-mechanisms-discordant-loci.

The following previously published data sets were used
    1. Raulerson CK
    2. Ko A
    3. Kidd JC
    4. et al.
    (2019) METSIM eQTL
    FTP, https://doi.org/10.1016/j.ajhg.2019.09.001.

Article and author information

Author details

  1. Yonathan Tamrat Aberra

    Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
    For correspondence
    ya8eb@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6055-2291
  2. Lijiang Ma

    Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Johan LM Björkegren

    Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mete Civelek

    Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
    For correspondence
    mete@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8141-0284

Funding

National Heart, Lung, and Blood Institute (2T32HL007284-46)

  • Yonathan Tamrat Aberra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Aberra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,140
    views
  • 213
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yonathan Tamrat Aberra
  2. Lijiang Ma
  3. Johan LM Björkegren
  4. Mete Civelek
(2023)
Predicting mechanisms of action at genetic loci associated with discordant effects on type 2 diabetes and abdominal fat accumulation
eLife 12:e79834.
https://doi.org/10.7554/eLife.79834

Share this article

https://doi.org/10.7554/eLife.79834

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.

    1. Computational and Systems Biology
    Jun Ren, Ying Zhou ... Qiyuan Li
    Research Article

    Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.