Cryo-electron tomography of Birbeck granules reveals the molecular mechanism of langerin lattice formation

  1. Toshiyuki Oda  Is a corresponding author
  2. Haruaki Yanagisawa
  3. Hideyuki Shinmori
  4. Youichi Ogawa
  5. Tatsuyoshi Kawamura
  1. University of Yamanashi, Japan
  2. University of Tokyo, Japan

Abstract

Langerhans cells are specialized antigen-presenting cells localized within the epidermis and mucosal epithelium. Upon contact with Langerhans cells, pathogens are captured by the C-type lectin langerin and internalized into a structurally unique vesicle known as a Birbeck granule. Although the immunological role of Langerhans cells and Birbeck granules have been extensively studied, the mechanism by which the characteristic zippered membrane structure of Birbeck granules is formed remains elusive. In this study, we observed isolated Birbeck granules using cryo-electron tomography and reconstructed the 3D structure of the repeating unit of the honeycomb lattice of langerin at 6.4 Å resolution. We found that the interaction between the two langerin trimers was mediated by docking the flexible loop at residues 258-263 into the secondary carbohydrate-binding cleft. Mutations within the loop inhibited Birbeck granule formation and the internalization of HIV pseudovirus. These findings suggest a molecular mechanism for membrane zippering during Birbeck granule biogenesis and provide insight into the role of langerin in the defense against viral infection.

Data availability

The map and the model have been deposited in EMDB under theaccession numbers: EMD-32906, and PDB 7WZ8.

The following data sets were generated

Article and author information

Author details

  1. Toshiyuki Oda

    Department of Anatomy and Structural Biology, University of Yamanashi, Yamanashi, Japan
    For correspondence
    toda@yamanashi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8090-2159
  2. Haruaki Yanagisawa

    Department of Cell Biology and Anatomy, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0313-2343
  3. Hideyuki Shinmori

    Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9864-8371
  4. Youichi Ogawa

    Department of Dermatology, University of Yamanashi, Yamanashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2635-888X
  5. Tatsuyoshi Kawamura

    Department of Dermatology, University of Yamanashi, Yamanashi, Japan
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (JP21H02654)

  • Toshiyuki Oda

Takeda Science Foundation

  • Toshiyuki Oda

Daiichi Sankyo Foundation of Life Science

  • Toshiyuki Oda

Naito Foundation

  • Toshiyuki Oda

Japan Society for the Promotion of Science (JP22H05538)

  • Toshiyuki Oda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Oda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,538
    views
  • 332
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Toshiyuki Oda
  2. Haruaki Yanagisawa
  3. Hideyuki Shinmori
  4. Youichi Ogawa
  5. Tatsuyoshi Kawamura
(2022)
Cryo-electron tomography of Birbeck granules reveals the molecular mechanism of langerin lattice formation
eLife 11:e79990.
https://doi.org/10.7554/eLife.79990

Share this article

https://doi.org/10.7554/eLife.79990

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.

    1. Immunology and Inflammation
    Alexander J Knights, Easton C Farrell ... Tristan Maerz
    Research Article

    Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single-cell RNA-sequencing and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7 and 28 days post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. In summary, we defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.