The circadian clock controls temporal and spatial patterns of floral development in sunflower

  1. Carine M Marshall
  2. Veronica L Thompson
  3. Nicky M Creux
  4. Stacey L Harmer  Is a corresponding author
  1. University of California, Davis, United States
  2. University of Pretoria, South Africa

Abstract

Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.

Data availability

All source data have been uploaded to Dryad under the following accession codes: 10.25338/B8865X (timelapse scoring), 10.25338/B86358 (pollinator visits), 10.25338/B8963G (consensus scoring), 10.25338/B8CW5R (ovary measurements), and 10.25338/B8HP9F (organ growth kinetics).

The following data sets were generated
    1. Marshall C
    2. Creux N
    (2023) Sunflower timelapse scoring
    Dryad Digital Repository, doi:10.25338/B8865X.
    1. Marshall C
    2. Thompson V
    (2022) Sunflower pollinator visit scoring
    Dryad Digital Repository, doi:10.25338/B86358.
    1. Marshall C
    (2023) Sunflower consensus scoring
    Dryad Digital Repository, doi:10.25338/B8963G.
    1. Marshall C
    (2023) Sunflower ovary measurements
    Dryad Digital Repository, doi:10.25338/B8CW5R.
    1. Marshall C
    2. Thompson V
    (2022) Organ kinetics measurements
    Dryad Digital Repository, doi:10.25338/B8HP9F.

Article and author information

Author details

  1. Carine M Marshall

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Veronica L Thompson

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0500-5639
  3. Nicky M Creux

    Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4179-6995
  4. Stacey L Harmer

    Department of Plant Biology, University of California, Davis, Davis, United States
    For correspondence
    slharmer@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6813-6682

Funding

National Science Foundation (IOS 1238040)

  • Stacey L Harmer

U.S. Department of Agriculture (CA-D-PLB-2259-H)

  • Stacey L Harmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pil Joon Seo, Seoul National University, Korea (South), Republic of

Version history

  1. Received: June 11, 2022
  2. Preprint posted: July 2, 2022 (view preprint)
  3. Accepted: January 12, 2023
  4. Accepted Manuscript published: January 13, 2023 (version 1)
  5. Version of Record published: February 28, 2023 (version 2)

Copyright

© 2023, Marshall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,518
    views
  • 401
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carine M Marshall
  2. Veronica L Thompson
  3. Nicky M Creux
  4. Stacey L Harmer
(2023)
The circadian clock controls temporal and spatial patterns of floral development in sunflower
eLife 12:e80984.
https://doi.org/10.7554/eLife.80984

Share this article

https://doi.org/10.7554/eLife.80984

Further reading

  1. Sunflowers need to keep track of time to develop and reproduce

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.