The circadian clock controls temporal and spatial patterns of floral development in sunflower

  1. Carine M Marshall
  2. Veronica L Thompson
  3. Nicky M Creux
  4. Stacey L Harmer  Is a corresponding author
  1. University of California, Davis, United States
  2. University of Pretoria, South Africa

Abstract

Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.

Data availability

All source data have been uploaded to Dryad under the following accession codes: 10.25338/B8865X (timelapse scoring), 10.25338/B86358 (pollinator visits), 10.25338/B8963G (consensus scoring), 10.25338/B8CW5R (ovary measurements), and 10.25338/B8HP9F (organ growth kinetics).

The following data sets were generated
    1. Marshall C
    2. Creux N
    (2023) Sunflower timelapse scoring
    Dryad Digital Repository, doi:10.25338/B8865X.
    1. Marshall C
    2. Thompson V
    (2022) Sunflower pollinator visit scoring
    Dryad Digital Repository, doi:10.25338/B86358.
    1. Marshall C
    (2023) Sunflower consensus scoring
    Dryad Digital Repository, doi:10.25338/B8963G.
    1. Marshall C
    (2023) Sunflower ovary measurements
    Dryad Digital Repository, doi:10.25338/B8CW5R.
    1. Marshall C
    2. Thompson V
    (2022) Organ kinetics measurements
    Dryad Digital Repository, doi:10.25338/B8HP9F.

Article and author information

Author details

  1. Carine M Marshall

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Veronica L Thompson

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0500-5639
  3. Nicky M Creux

    Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4179-6995
  4. Stacey L Harmer

    Department of Plant Biology, University of California, Davis, Davis, United States
    For correspondence
    slharmer@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6813-6682

Funding

National Science Foundation (IOS 1238040)

  • Stacey L Harmer

U.S. Department of Agriculture (CA-D-PLB-2259-H)

  • Stacey L Harmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Marshall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carine M Marshall
  2. Veronica L Thompson
  3. Nicky M Creux
  4. Stacey L Harmer
(2023)
The circadian clock controls temporal and spatial patterns of floral development in sunflower
eLife 12:e80984.
https://doi.org/10.7554/eLife.80984

Share this article

https://doi.org/10.7554/eLife.80984

Further reading

  1. Sunflowers need to keep track of time to develop and reproduce

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.