Selection and the direction of phenotypic evolution

  1. François Mallard  Is a corresponding author
  2. Bruno Afonso
  3. Henrique Teotónio  Is a corresponding author
  1. Ecole Normale Superieure, France

Abstract

Predicting adaptive phenotypic evolution depends on invariable selection gradients and on the stability of the genetic covariances between the component traits of the multivariate phenotype. We describe the evolution of six traits of locomotion behavior and body size in the nematode Caenorhabditis elegans for 50 generations of adaptation to a novel environment. We show that the direction of adaptive multivariate phenotypic evolution can be predicted from the ancestral selection differentials, particularly when the traits were measured in the new environment. Interestingly, the evolution of individual traits does not always occur in the direction of selection, nor are trait responses to selection always homogeneous among replicate populations. These observations are explained because the phenotypic dimension with most of the ancestral standing genetic variation only partially aligns with the phenotypic dimension under directional selection. These findings validate selection theory and suggest that the direction of multivariate adaptive phenotypic evolution is predictable for tens of generations.

Data availability

New data, R code for analysis and modeling results is freely accessible and can be found at https://github.com/ExpEvolWormLab/Mallard_Robertson

The following previously published data sets were used

Article and author information

Author details

  1. François Mallard

    Institut de Biologie de l'ENS, Ecole Normale Superieure, Paris, France
    For correspondence
    mallard@bio.ens.psl.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2087-1914
  2. Bruno Afonso

    Institut de Biologie de l'ENS, Ecole Normale Superieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Henrique Teotónio

    Institut de Biologie de l'ENS, Ecole Normale Superieure, Paris, France
    For correspondence
    teotonio@bio.ens.psl.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1057-6882

Funding

European Research Council (ERC-St-243285)

  • Henrique Teotónio

Agence Nationale pour la Recherche (ANR-14-ACHN-0032-01)

  • Henrique Teotónio

Agence Nationale pour la Recherche (ANR-17-CE02-0017-01)

  • Henrique Teotónio

National Science Foundation (PHY-1748958)

  • Henrique Teotónio

Gordon and Betty Moore Foundation (2919.02)

  • Henrique Teotónio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Mallard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,309
    views
  • 254
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. François Mallard
  2. Bruno Afonso
  3. Henrique Teotónio
(2023)
Selection and the direction of phenotypic evolution
eLife 12:e80993.
https://doi.org/10.7554/eLife.80993

Share this article

https://doi.org/10.7554/eLife.80993

Further reading

    1. Evolutionary Biology
    Amanda D Melin
    Insight

    Studying the fecal microbiota of wild baboons helps provide new insight into the factors that influence biological aging.

    1. Cancer Biology
    2. Evolutionary Biology
    Arman Angaji, Michel Owusu ... Johannes Berg
    Research Article

    In growing cell populations such as tumours, mutations can serve as markers that allow tracking the past evolution from current samples. The genomic analyses of bulk samples and samples from multiple regions have shed light on the evolutionary forces acting on tumours. However, little is known empirically on the spatio-temporal dynamics of tumour evolution. Here, we leverage published data from resected hepatocellular carcinomas, each with several hundred samples taken in two and three dimensions. Using spatial metrics of evolution, we find that tumour cells grow predominantly uniformly within the tumour volume instead of at the surface. We determine how mutations and cells are dispersed throughout the tumour and how cell death contributes to the overall tumour growth. Our methods shed light on the early evolution of tumours in vivo and can be applied to high-resolution data in the emerging field of spatial biology.