Phenotypic Evolution: Predicting the future
Predicting how an organism will physically change when adapting to a new environment is a fundamental question in evolutionary biology (Svensson et al., 2021; Walsh and Blows, 2009). However, this is no easy challenge, as changes to one trait may alter another, resulting in unexpected phenotypic outcomes.
One of the main statistical tools scientists use to predict phenotypic evolution is the additive genetic covariance matrix, commonly known as the G matrix. This captures all the genetic variation underlying a set of traits and reveals how this variation influences each of the studied characteristics (Lande, 1979; Walsh and Blows, 2009): for instance, genetic variants that increase the size of individuals may also lead to higher values in other traits, such as speed. Statistical analyses of this matrix can then reveal which combination of trait values has the greatest amount of genetic variation, referred to as gmax. The genetic variation of a population defines the rate of evolution: the more individuals differ genetically, the faster evolution will occur. Consequently, gmax indicates the direction in which a population will evolve the most rapidly. How well gmax aligns with the direction of selection (i.e. the set of traits which will impart the highest fitness) then provides a framework for predicting how a population is likely to phenotypically adapt (Figure 1).
Observational and manipulative experiments have shown that the G matrix corresponds with how natural populations adapt to different environments (Costa E Silva et al., 2020; Walter, 2023). Indeed, a meta-analysis demonstrated that genetic variation can predict roughly 40% of phenotypic differences in populations of plants (Opedal et al., 2023). However, there are also examples of contemporary evolution not following the predictions of the G matrix (Pujol et al., 2018).
It is possible that instead of guiding the direction of evolution, the G matrix may in fact just become more aligned with phenotypic evolution during adaptation. There is also considerable evidence to suggest that the effect genes have on traits can change across environments (Wood and Brodie, 2015). This could potentially reduce the accuracy of the evolutionary predictions, which assume that genetic variation remains constant even if the environment of a population changes. Now, in eLife, François Mallard, Bruno Afonso and Henrique Teotónio from PSL University in Paris report a series of experiments that test how good the G matrix is at predicting future phenotypes (Mallard et al., 2023a).
Mallard et al. studied the worms Caenorhabditis elegans as they were experimentally adapted to environments containing increasingly more salt. First, the team compared worms living in either low or high levels of salt to determine if the genetic variation of the population differed between these two environments. The G matrix of the worms – which encompassed seven traits (one related to body size and the other six to movement) – was similar in both conditions. This suggests that the genetic variation of this initial, ancestral population can predict what will happen to the worms as they gradually adapt to saltier surroundings.
To test this, Mallard et al. adapted three large replicates of the ancestral population (containing over 1,000 worms) to increasing salt concentrations over 35 generations, and then kept them in high salt for a further 15 generations. The worms were then tested to make sure each replicate had evolved higher fitness than the ancestral strain. Mallard et al. found that the mean values of the traits studied (movement and size) evolved in a similar direction to the changes predicted by the G-matrix of their ancestors.
Typically, the G matrix of a populations’ ancestors is unknown. But C. elegans can be cryopreserved, meaning Mallard et al. were able to resurrect worms from the ancestral population and measure their G matrix alongside the G matrices of the three evolved groups. This revealed that adaptation to high salt caused the genetic variance of gmax to shrink. However, the combination of traits with the most genetic variance did not change (unlike in Figure 1C), suggesting that although selection removed genetic variation as adaptation occurred, the phenotypic evolution of the worms remained predictable.
This study provides strong evidence that the G matrix can retain its predictive ability over evolutionary relevant timeframes (in this case for at least 50 generations). However, major questions about this statistical tool still remain. For instance, can gmax ever become aligned with the direction of selection? Does the emergence of new mutations in the genome change the structure of this matrix? Indeed, an earlier study by Mallard and colleagues found that if a mutation was not countered by selection, the set of traits with the most genetic variance would change. This suggests that genetic variation lost because of selection might not be readily replenished by mutations, leading to evolution taking a different direction (Mallard et al., 2023b).
The finding by Mallard et al. that genetic variation is not influenced by the external surroundings of a population is also at odds with previous reports showing genetic effects to depend on the environment (Wood and Brodie, 2015). Further studies experimentally evolving animals in a laboratory may help to resolve how environmental sensitivity of the G matrix influences predictions, as well as provide further insights into the role G matrix plays in predicting evolution.
References
-
Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometryEvolution; International Journal of Organic Evolution 33:402–416.https://doi.org/10.1111/j.1558-5646.1979.tb04694.x
-
Variation in mutational (co)variancesG3: Genes, Genomes, Genetics 13:jkac335.https://doi.org/10.1093/g3journal/jkac335
-
The missing response to selection in the wildTrends in Ecology & Evolution 33:337–346.https://doi.org/10.1016/j.tree.2018.02.007
-
Correlational selection in the age of genomicsNature Ecology & Evolution 5:562–573.https://doi.org/10.1038/s41559-021-01413-3
-
Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptationAnnual Review of Ecology, Evolution, and Systematics 40:41–59.https://doi.org/10.1146/annurev.ecolsys.110308.120232
-
Environmental effects on the structure of the G-matrixEvolution; International Journal of Organic Evolution 69:2927–2940.https://doi.org/10.1111/evo.12795
Article and author information
Author details
Publication history
Copyright
© 2023, Walter and McGuigan
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,004
- views
-
- 89
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Genetics and Genomics
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.
-
- Evolutionary Biology
- Genetics and Genomics
It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.