Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders

  1. Lydie Burglen
  2. Evelien Van Hoeymissen
  3. Leila Qebibo
  4. Magalie Barth
  5. Newell Belnap
  6. Felix Boschann
  7. Christel Depienne
  8. Katrien De Clercq
  9. Andrew GL Douglas
  10. Mark P Fitzgerald
  11. Nicola Foulds
  12. Catherine Garel
  13. Ingo Helbig
  14. Katharina Held
  15. Denise Horn
  16. Annelies Janssen
  17. Angela M Kaindl
  18. Vinodh Narayanan
  19. Christina Pragner
  20. Mailys Rupin
  21. Alexandra Afenjar
  22. Siyuan Zhao
  23. Vincent Th Ramaekers
  24. Sarah M Ruggiero
  25. Simon Thomas
  26. Stéphanie Valence
  27. Lionel Van Maldergem
  28. Tibor Rohacs
  29. Diana Rodriguez
  30. David Dyment
  31. Thomas Voets  Is a corresponding author
  32. Joris Vriens  Is a corresponding author
  1. INSERM UMR 1163, France
  2. KU Leuven, Belgium
  3. Hôpitaux Universitaires Paris-Ouest, France
  4. Centre Hospitalier Universitaire d'Angers, France
  5. Translational Genomics Research Institute, United States
  6. Charité - Universitäts medizin Berlin, Germany
  7. Essen University Hospital, United States
  8. University Hospital Southampton NHS Foundation Trust, United Kingdom
  9. Children's Hospital of Philadelphia, United States
  10. Charité - Universitätsmedizin Berlin, Germany
  11. Rutgers, The State University of New Jersey, United States
  12. University of Liège, Belgium
  13. Salisbury District Hospital, United Kingdom
  14. Centre Hospitalier Universitaire de Besançon, France
  15. University of Ottawa, Canada

Abstract

TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy (DEE), but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function (Van Hoeymissen et al., 2020; Zhao et al., 2020). Here, we report a further ten patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulphate, when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans, and provide support for the evaluation of TRPM3 antagonists as a potential therapy.

Data availability

Raw data for the following figures are made available via figshare (https://doi.org/10.6084/m9.figshare.21799604): Figure 1 - Figure Supplement 1; Figure 3; Figure 3 - Figure Supplement 1, 2, 3 and 4; Figure 4; Figure 4 - Figure Supplement 1, 2 and 3.

The following data sets were generated

Article and author information

Author details

  1. Lydie Burglen

    Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Evelien Van Hoeymissen

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3897-8998
  3. Leila Qebibo

    Département de Génétique, Hôpitaux Universitaires Paris-Ouest, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Magalie Barth

    Department of Genetics, Centre Hospitalier Universitaire d'Angers, Angers, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Newell Belnap

    Neurogenomics Division, Translational Genomics Research Institute, Phoenix, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Felix Boschann

    Institute of Medical Genetics and Human Genetics, Charité - Universitäts medizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christel Depienne

    Institute of Human Genetics, Essen University Hospital, Essen, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katrien De Clercq

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrew GL Douglas

    University Hospital Southampton NHS Foundation Trust, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark P Fitzgerald

    Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicola Foulds

    Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Wessex, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Catherine Garel

    Département de Génétique, Hôpitaux Universitaires Paris-Ouest, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Ingo Helbig

    Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Katharina Held

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  15. Denise Horn

    Institute of Medical Genetics and Human Genetics, Charité - Universitäts medizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0870-8911
  16. Annelies Janssen

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6735-8248
  17. Angela M Kaindl

    Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9454-206X
  18. Vinodh Narayanan

    Neurogenomics Division, Translational Genomics Research Institute, Phoenix, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0658-3847
  19. Christina Pragner

    Department of Pediatric Neurology, Charité - Universitäts medizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  20. Mailys Rupin

    Department of Neuropediatrics, Centre Hospitalier Universitaire d'Angers, Angers, France
    Competing interests
    The authors declare that no competing interests exist.
  21. Alexandra Afenjar

    Developmental Brain Disorders Laboratory, INSERM UMR 1163, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  22. Siyuan Zhao

    Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2005-9440
  23. Vincent Th Ramaekers

    Division Neuropediatrics, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  24. Sarah M Ruggiero

    Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Simon Thomas

    Wessex Regional Genetics Laboratory, Salisbury District Hospital, Wessex, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  26. Stéphanie Valence

    Département de Génétique, Hôpitaux Universitaires Paris-Ouest, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  27. Lionel Van Maldergem

    Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besancon, France
    Competing interests
    The authors declare that no competing interests exist.
  28. Tibor Rohacs

    Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3580-2575
  29. Diana Rodriguez

    Département de Génétique, Hôpitaux Universitaires Paris-Ouest, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  30. David Dyment

    Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  31. Thomas Voets

    Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
    For correspondence
    Thomas.Voets@vib.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
  32. Joris Vriens

    Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    For correspondence
    Joris.Vriens@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2502-0409

Funding

Flanders' FOOD (G.0D1417N)

  • Joris Vriens

Flanders' FOOD (G.084515N)

  • Joris Vriens

Flanders' FOOD (G.0A6719N)

  • Joris Vriens

Flanders' FOOD (11E782)

  • Evelien Van Hoeymissen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was performed in accordance with the guidelines specified by the institutional review boards and ethics committees at each institution. Information of institutional protocols are provided in the section of Material & Methods. All parents agreed on sharing and publicing the patients' information.Patients information:patient 1, 3, 4, 7: Written informed consent was obtained from the parents of the probands for molecular genetic analysis and possible publication of the anonymized clinical data. The study was done in accordance with local research and ethics requirements.patient 2: Parents signed an informed consent, received a genetic counselling before and after the analysis, and the genetic study was performed in accordance with German and French ethical requirements and laws.patient 5: UK ethical approval by the Cambridge South Research Ethics Committee (10/H0305/83)patient 6: outine clinical care within the UK National Health Service, and so no specific institutional ethical approval was requiredpatient 8: Declaration of Helsinki with local approval by the Children's Hospital of Philadelphia (CHOP) Institutional Review Board (IRB 15-12226).patient 9: The participating family signed the IRB research protocol of the University of Pennsylvania division of Neurologypatient 10: The study protocol and consent documents were approved by the Western Institutional Review Board (WIRB # 20120789). The retrospective analysis of epilepsy patient data was approved by the local ethics committees of the Charité (approval no. EA2/084/18)

Copyright

© 2023, Burglen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,518
    views
  • 554
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lydie Burglen
  2. Evelien Van Hoeymissen
  3. Leila Qebibo
  4. Magalie Barth
  5. Newell Belnap
  6. Felix Boschann
  7. Christel Depienne
  8. Katrien De Clercq
  9. Andrew GL Douglas
  10. Mark P Fitzgerald
  11. Nicola Foulds
  12. Catherine Garel
  13. Ingo Helbig
  14. Katharina Held
  15. Denise Horn
  16. Annelies Janssen
  17. Angela M Kaindl
  18. Vinodh Narayanan
  19. Christina Pragner
  20. Mailys Rupin
  21. Alexandra Afenjar
  22. Siyuan Zhao
  23. Vincent Th Ramaekers
  24. Sarah M Ruggiero
  25. Simon Thomas
  26. Stéphanie Valence
  27. Lionel Van Maldergem
  28. Tibor Rohacs
  29. Diana Rodriguez
  30. David Dyment
  31. Thomas Voets
  32. Joris Vriens
(2023)
Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders
eLife 12:e81032.
https://doi.org/10.7554/eLife.81032

Share this article

https://doi.org/10.7554/eLife.81032

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.