Maternal obesity blunts antimicrobial responses in fetal monocytes

  1. Suhas Sureshchandra
  2. Brianna M Doratt
  3. Norma Mendza
  4. Oleg Varlamov
  5. Monica Rincon
  6. Nicole E Marshall
  7. Ilhem Messaoudi  Is a corresponding author
  1. University of California, Irvine, United States
  2. University of Kentucky, United States
  3. Oregon Health & Science University, United States

Abstract

Maternal pre-pregnancy (pregravid) obesity is associated with adverse outcomes for both mother and offspring. Amongst the complications for the offspring is increased susceptibility and severity of neonatal infections necessitating admission to the intensive care unit, notably bacterial sepsis and enterocolitis. Previous studies have reported aberrant responses to LPS and polyclonal stimulation by umbilical cord blood monocytes that were mediated by alterations in the epigenome. In this study, we show that pregravid obesity dysregulates umbilical cord blood monocyte responses to bacterial and viral pathogens. Specifically, interferon-stimulated gene expression and inflammatory responses to respiratory syncytial virus (RSV) and E. coli respectively were significantly dampened. Although upstream signaling events were comparable, translocation of the key transcription factor NF-kB and chromatin accessibility at pro-inflammatory gene promoters following TLR stimulation was significantly attenuated. Using a rhesus macaque model of western style diet-induced obesity, we further demonstrate that this defect is detected in fetal peripheral monocytes and tissue-resident macrophages during gestation. Collectively, these data indicate that maternal obesity alters metabolic, signaling, and epigenetic profiles of fetal monocytes leading to a state of immune paralysis during late gestation and at birth.

Data availability

The datasets supporting the conclusions of this article are available on NCBI's Sequence Read Archive PRJNA847067 and PRJNA914662.

The following data sets were generated

Article and author information

Author details

  1. Suhas Sureshchandra

    Institute for Immunology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brianna M Doratt

    Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexingtion, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8107-724X
  3. Norma Mendza

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Oleg Varlamov

    Division of Cardiometabolic Health, Oregon Health & Science University, Beaverton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Monica Rincon

    Maternal-Fetal Medicine, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5574-585X
  6. Nicole E Marshall

    Maternal-Fetal Medicine, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ilhem Messaoudi

    Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexingtion, United States
    For correspondence
    ilhem.messaoudi@uky.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3203-2405

Funding

National Institute of Allergy and Infectious Diseases (R03AI112808)

  • Ilhem Messaoudi

National Institute of Allergy and Infectious Diseases (1R01AI142841)

  • Ilhem Messaoudi

National Institute of Allergy and Infectious Diseases (1R01AI145910)

  • Ilhem Messaoudi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jalees Rehman, University of Illinois at Chicago, United States

Ethics

Human subjects: This study was approved by the Institutional Ethics Review Board of Oregon Health and Science University (STUDY00020735 "Perinatant Early Determinants of Immune Development") and the University of California, Irvine (protocol number 2017-3397 "Impact of maternal pre-pregnancy obesity on the offspring immune system"). Written consent was obtained from all subjects.

Version history

  1. Received: June 22, 2022
  2. Preprint posted: July 10, 2022 (view preprint)
  3. Accepted: January 15, 2023
  4. Accepted Manuscript published: January 16, 2023 (version 1)
  5. Version of Record published: February 2, 2023 (version 2)

Copyright

© 2023, Sureshchandra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,186
    Page views
  • 193
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suhas Sureshchandra
  2. Brianna M Doratt
  3. Norma Mendza
  4. Oleg Varlamov
  5. Monica Rincon
  6. Nicole E Marshall
  7. Ilhem Messaoudi
(2023)
Maternal obesity blunts antimicrobial responses in fetal monocytes
eLife 12:e81320.
https://doi.org/10.7554/eLife.81320

Share this article

https://doi.org/10.7554/eLife.81320

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.

    1. Chromosomes and Gene Expression
    Fujun Zhou, Julie M Bocetti ... Jon R Lorsch
    Research Article

    We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5′-untranslated regions (5′UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5′UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5′UTRs.