Differences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial
Abstract
Background: The development of vaccines to control the COVID-19 pandemic progression is a worldwide priority. CoronaVac® is an inactivated SARS-CoV-2 vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile.
Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged ≥18 years. Volunteers received two doses of CoronaVac® separated by two (0-14 schedule) or four weeks (0-28 schedule). 2,302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured.
Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern between schedules. Stimulation of PBMCs with MPs induced the secretion of IFN-g and the expression of activation induced markers for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-g secretion.
Conclusions: Immunization with CoronaVac® in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule.
Funding: Ministry of Health, Government of Chile, Confederation of Production and Commerce & Millennium Institute on Immunology and Immunotherapy, Chile.
Clinical trial number: NCT04651790.
Data availability
All raw data (anonymized to protect the information of volunteers) is included with the publication of this article as a supporting file. Source Data File 1 contains the numerical data used to generate all the figures.The study protocol is also available online and was previously published in doi: 10.1101/2021.03.31.21254494.
Article and author information
Author details
Funding
Ministry of Health, Government of Chile (N/A)
- Alexis M Kalergis
The Confederation of Production and Commerce, Chile (N/A)
- Alexis M Kalergis
The Millenium Institute in Immunology and Immunotherapy (ICN09_016)
- Pablo A González
- Susan M Bueno
- Alexis M Kalergis
The Innovation fund for competitiveness FIC-R 2017 (30488811-0)
- Pablo A González
- Susan M Bueno
- Alexis M Kalergis
FONDECYT Grant (1190156)
- Ricardo Soto-Rifo
FONDECYT Grant (1180798)
- Fernando Valiente-Echeverria
NIH NIAID Contract (75N93021C00016)
- Alessandro Sette
NIH NIAID Contract (75N9301900065)
- Daniela Weiskopf
- Alessandro Sette
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This clinical trial (clinicaltrials.gov NCT04651790) is a randomized and controlled study held in Chile with eight different sites. The study protocol adhered to the current Tripartite Guidelines for Good Clinical Practices, the Declaration of Helsinki, and local regulations and was approved by the Institutional Scientific Ethical Committee of Health Sciences of the Pontificia Universidad Católica de Chile, (#200708006). The execution was approved by the Chilean Public Health Institute (#24204/20).
Reviewing Editor
- Jameel Iqbal, DaVita Labs, United States
Version history
- Received: June 29, 2022
- Preprint posted: August 8, 2022 (view preprint)
- Accepted: October 9, 2022
- Accepted Manuscript published: October 13, 2022 (version 1)
- Version of Record published: October 25, 2022 (version 2)
Copyright
© 2022, Gálvez et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 709
- Page views
-
- 185
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
The co-expression of inhibitory receptors (IRs) is a hallmark of CD8+ T-cell exhaustion (Tex) in people living with HIV-1 (PLWH). Understanding alterations of IRs expression in PLWH on long-term antiretroviral treatment (ART) remains elusive but is critical to overcoming CD8+ Tex and designing novel HIV-1 cure immunotherapies. To address this, we combine high-dimensional supervised and unsupervised analysis of IRs concomitant with functional markers across the CD8+ T-cell landscape on 24 PLWH over a decade on ART. We define irreversible alterations of IRs co-expression patterns in CD8+ T cells not mitigated by ART and identify negative associations between the frequency of TIGIT+ and TIGIT+ TIM-3+ and CD4+ T-cell levels. Moreover, changes in total, SEB-activated, and HIV-1-specific CD8+ T cells delineate a complex reshaping of memory and effector-like cellular clusters on ART. Indeed, we identify a selective reduction of HIV-1 specific-CD8+ T-cell memory-like clusters sharing TIGIT expression and low CD107a that can be recovered by mAb TIGIT blockade independently of IFNγ and IL-2. Collectively, these data characterize with unprecedented detail the patterns of IRs expression and functions across the CD8+ T-cell landscape and indicate the potential of TIGIT as a target for Tex precision immunotherapies in PLWH at all ART stages.
-
- Genetics and Genomics
- Immunology and Inflammation
Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.