NFATc1 marks articular cartilage progenitors and negatively determines articular chondrocyte differentiation

  1. Fan Zhang
  2. Yuanyuan Wang
  3. Ying Zhao
  4. Manqi Wang
  5. Bin Zhao
  6. Bin Zhou
  7. Xianpeng Ge  Is a corresponding author
  1. Xuan Wu Hospital of the Capital Medical University, China
  2. Central South University, China
  3. Albert Einstein College of Medicine, United States
  4. Chinese Academy of Sciences, China

Abstract

The origin and differentiation mechanism of articular chondrocytes remain poorly understood. Broadly, the difference in developmental mechanisms of articular and growth-plate cartilage is still less elucidated. Here, we identified that the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) is a crucial regulator of articular, but not growth-plate, chondrocyte differentiation during development. At the early stage of mouse knee development (embryonic day 13.5), NFATc1-expressing cells were mainly located in the flanking region of the joint interzone. With development, NFATc1-expressing cells generated almost all articular chondrocytes, but not chondrocytes in limb growth-plate primordium. NFATc1-expressing cells displayed prominent capacities for colony formation and multipotent differentiation. Transcriptome analyses revealed a set of characteristic genes in NFATc1-enriched articular cartilage progenitors. Strikingly, the expression of NFATc1 was diminished with articular chondrocyte differentiation and suppressing NFATc1 expression in articular cartilage progenitors was sufficient to induce spontaneous chondrogenesis while overexpressing NFATc1 suppresses chondrogenesis. Mechanistically, NFATc1 negatively regulated the transcriptional activity of the Col2a1 gene. Thus, our results reveal that NFATc1 characterizes articular, but not growth-plate, cartilage progenitors during development and negatively determines articular chondrocyte differentiation at least partly through regulating COL2A1 gene transcription.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. The raw datasets of RNA-seq are available in Dryad Digital Repository (doi:10.5061/dryad.2fqz612rw).

The following data sets were generated

Article and author information

Author details

  1. Fan Zhang

    Xuan Wu Hospital of the Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuanyuan Wang

    Xuan Wu Hospital of the Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ying Zhao

    Xuan Wu Hospital of the Capital Medical University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Manqi Wang

    Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Bin Zhao

    Department of Genetics, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bin Zhou

    Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xianpeng Ge

    Xuan Wu Hospital of the Capital Medical University, Beijing, China
    For correspondence
    xianpeng.ge@xwhosp.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1291-2096

Funding

National Natural Science Foundation of China (81100767)

  • Xianpeng Ge

Beijing Natural Science Foundation (5222008)

  • Xianpeng Ge

Natural Science Foundation of Capital Medical University (1220010146)

  • Xianpeng Ge

Outstanding Young Researcher Award of Beijing Municipality (N/A)

  • Xianpeng Ge

Outstanding Researcher Award of Xuanwu Hospital Capital Medical University (N/A)

  • Xianpeng Ge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies followed the recommendations in the Guide for the Care and Use of Laboratory Animals of the U.S. National Institutes of Health and were approved by Institutional Animal Care and Use Committee at Capital Medical University (protocol #: AEEI-2022-036).

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,324
    views
  • 278
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fan Zhang
  2. Yuanyuan Wang
  3. Ying Zhao
  4. Manqi Wang
  5. Bin Zhao
  6. Bin Zhou
  7. Xianpeng Ge
(2023)
NFATc1 marks articular cartilage progenitors and negatively determines articular chondrocyte differentiation
eLife 12:e81569.
https://doi.org/10.7554/eLife.81569

Share this article

https://doi.org/10.7554/eLife.81569

Further reading

    1. Chromosomes and Gene Expression
    2. Medicine
    Xianghong Xie, Mingyue Gao ... Xiaojun Liu
    Research Article

    LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.

    1. Evolutionary Biology
    2. Medicine
    Rion Brattig-Correia, Joana M Almeida ... Paulo Navarro-Costa
    Tools and Resources

    Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.