Abstract

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.

Data availability

Single nucleus transcriptomic datasets from human MTG (Hodge et al., 2019) and mouse VISp (Tasic et al., 2018) are available in the Allen Institute website (https://portal.brain-map.org/atlases-and-data/rnaseq). Synaptic connectivity assay datasets including raw traces and related metadata information with MATLAB files (.mat), classifier analysis codes, and their intrinsic membrane property values are available in the DRYAD repository (doi:10.5061/dryad.jdfn2z3dm). Synaptic physiology experimental protocols and related topics are also available in the Allen Institute website (https://portal.brain-map.org/explore/connectivity/synaptic-physiology). To provide more publicly accessible data format, Neurodata Without Borders (NWB) files for synaptic connectivity assay performed in this study and human single cell patch-seq experimental data will be also available soon at DANDI or the BICCN data catalog.

Article and author information

Author details

  1. Mean-Hwan Kim

    Allen Institute for Brain Science, Seattle, United States
    For correspondence
    meanhwank@alleninstitute.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8065-4631
  2. Cristina Radaelli

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  3. Elliot R Thomsen

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Deja Monet

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Thomas Chartrand

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7093-8681
  6. Nikolas L Jorstad

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  7. Joseph T Mahoney

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1374-3893
  8. Michael J Taormina

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  9. Brian Long

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Katherine Baker

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  11. Trygve E Bakken

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-7386
  12. Luke Campagnola

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  13. Tamara Casper

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  14. Michael Clark

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  15. Nick Dee

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  16. Florence D'Orazi

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  17. Clare Gamlin

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  18. Brian E Kalmbach

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  19. Sara Kebede

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  20. Brian R Lee

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3210-5638
  21. Lindsay Ng

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  22. Jessica Trinh

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  23. Charles Cobbs

    Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, United States
    Competing interests
    No competing interests declared.
  24. Ryder P Gwinn

    Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, United States
    Competing interests
    No competing interests declared.
  25. C Dirk Keene

    Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5291-1469
  26. Andrew L Ko

    Department of Neurological Surgery, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  27. Jeffrey G Ojemann

    Department of Neurological Surgery, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  28. Daniel L Silbergeld

    Department of Neurological Surgery, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  29. Staci Sorensen

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  30. Jim Berg

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  31. Kimberly A Smith

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  32. Philip R Nicovich

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  33. Tim Jarsky

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4399-539X
  34. Gabe J Murphy

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
  35. Hongkui Zeng

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0326-5878
  36. Jonathan T Ting

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    Jonathan T Ting, U.S. patent application #PCT_US2019_054539 related to this work (vector CN1390)..
  37. Boaz P. Levi

    Allen Institute for Brain Science, Seatlle, United States
    Competing interests
    Boaz P. Levi, U.S. patent application #PCT_US2019_054539 related to this work (vector CN1390)..
  38. Ed Lein

    Allen Institute for Brain Science, Seattle, United States
    Competing interests
    Ed Lein, U.S. patent application #PCT_US2019_054539 related to this work (vector CN1390)..

Funding

NIH BRAIN Initiative (1RF1MH114126-01)

  • Jonathan T Ting
  • Boaz P. Levi
  • Ed Lein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Version history

  1. Preprint posted: October 17, 2020 (view preprint)
  2. Received: July 14, 2022
  3. Accepted: May 29, 2023
  4. Accepted Manuscript published: May 30, 2023 (version 1)
  5. Version of Record published: July 10, 2023 (version 2)

Copyright

© 2023, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,831
    views
  • 283
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mean-Hwan Kim
  2. Cristina Radaelli
  3. Elliot R Thomsen
  4. Deja Monet
  5. Thomas Chartrand
  6. Nikolas L Jorstad
  7. Joseph T Mahoney
  8. Michael J Taormina
  9. Brian Long
  10. Katherine Baker
  11. Trygve E Bakken
  12. Luke Campagnola
  13. Tamara Casper
  14. Michael Clark
  15. Nick Dee
  16. Florence D'Orazi
  17. Clare Gamlin
  18. Brian E Kalmbach
  19. Sara Kebede
  20. Brian R Lee
  21. Lindsay Ng
  22. Jessica Trinh
  23. Charles Cobbs
  24. Ryder P Gwinn
  25. C Dirk Keene
  26. Andrew L Ko
  27. Jeffrey G Ojemann
  28. Daniel L Silbergeld
  29. Staci Sorensen
  30. Jim Berg
  31. Kimberly A Smith
  32. Philip R Nicovich
  33. Tim Jarsky
  34. Gabe J Murphy
  35. Hongkui Zeng
  36. Jonathan T Ting
  37. Boaz P. Levi
  38. Ed Lein
(2023)
Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex
eLife 12:e81863.
https://doi.org/10.7554/eLife.81863

Share this article

https://doi.org/10.7554/eLife.81863

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.