Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification

  1. Zhanying Feng
  2. Zhana Duren
  3. Jingxue Xin
  4. Qiuyue Yuan
  5. Yaoxi He
  6. Bing Su
  7. Wing Hung Wong  Is a corresponding author
  8. Yong Wang  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Clemson University, United States
  3. Stanford University, United States

Abstract

Systems genetics holds the promise to decipher complex traits by interpreting their associated SNPs through gene regulatory networks derived from comprehensive multi-omics data of cell types, tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility and gene expression data into context-specific regulatory network atlas and regulatory categories, conduct heritability enrichment analysis with GWAS summary statistics, identify relevant tissues, and depict common genetic factors acting in the shared regulatory networks between traits by relevance correlation. Our method improves power upon existing approaches by associating SNPs with context-specific regulatory elements to assess heritability enrichments and by explicitly prioritizing gene regulations underlying relevant tissues. Ablation studies, independent data validation, and comparison experiments with existing methods on GWAS of six phenotypes show that SpecVar can improve heritability enrichment, accurately detect relevant tissues, and reveal causal regulations. Furthermore, SpecVar correlates the relevance patterns for pairs of phenotypes and better reveals shared SNP associated regulations of phenotypes than existing methods. Studying GWAS of 206 phenotypes in UK-Biobank demonstrates that SpecVar leverages the context-specific regulatory network atlas to prioritize phenotypes' relevant tissues and shared heritability for biological and therapeutic insights. SpecVar provides a powerful way to interpret SNPs via context-specific regulatory networks and is available at https://github.com/AMSSwanglab/SpecVar.

Data availability

Codes and regulatory network resources are available at https://github.com/AMSSwanglab/SpecVar. Expression and chromatin accessibility data were summarized in Table S1. GWAS data used: GWAS summary statistics of LDL and TC were downloaded at http://csg.sph.umich.edu/willer/public/lipids2013/; GWAS summary statistics of EA (GCST006442), CP (GCST006572), BrainShape (GCST90012880-GCST90013164), and Face (GCST009464) were downloaded at GWAS catalog https://www.ebi.ac.uk/gwas/summary-statistics; GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-biobank. The LDSC genetic correlation and phenotypic correlation computed from individual phenotypic data were downloaded at https://ukbb-rg.hail.is/.

Article and author information

Author details

  1. Zhanying Feng

    Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhana Duren

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jingxue Xin

    Department of Statistics, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiuyue Yuan

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yaoxi He

    Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bing Su

    Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wing Hung Wong

    Department of Statistics, Stanford University, Palo Alto, United States
    For correspondence
    whwong@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Yong Wang

    Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
    For correspondence
    zyfeng@amss.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0695-5273

Funding

National Key Research and Development Program of China (2022YFA1004800,2020YFA0712402)

  • Yong Wang

Strategic Priority Research Program of the Chinese Academy of Science (XDPB17)

  • Yong Wang

CAS Young Scientists in Basic esearch (YSBR-077)

  • Yong Wang

National Natural Science Foundation of China (12025107,11871463,11688101)

  • Yong Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Charles Farber, University of Virginia, United States

Version history

  1. Received: August 8, 2022
  2. Preprint posted: September 7, 2022 (view preprint)
  3. Accepted: December 13, 2022
  4. Accepted Manuscript published: December 16, 2022 (version 1)
  5. Version of Record published: January 3, 2023 (version 2)

Copyright

© 2022, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,012
    views
  • 104
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhanying Feng
  2. Zhana Duren
  3. Jingxue Xin
  4. Qiuyue Yuan
  5. Yaoxi He
  6. Bing Su
  7. Wing Hung Wong
  8. Yong Wang
(2022)
Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification
eLife 11:e82535.
https://doi.org/10.7554/eLife.82535

Share this article

https://doi.org/10.7554/eLife.82535

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.