Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification

  1. Zhanying Feng
  2. Zhana Duren
  3. Jingxue Xin
  4. Qiuyue Yuan
  5. Yaoxi He
  6. Bing Su
  7. Wing Hung Wong  Is a corresponding author
  8. Yong Wang  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Clemson University, United States
  3. Stanford University, United States

Abstract

Systems genetics holds the promise to decipher complex traits by interpreting their associated SNPs through gene regulatory networks derived from comprehensive multi-omics data of cell types, tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility and gene expression data into context-specific regulatory network atlas and regulatory categories, conduct heritability enrichment analysis with GWAS summary statistics, identify relevant tissues, and depict common genetic factors acting in the shared regulatory networks between traits by relevance correlation. Our method improves power upon existing approaches by associating SNPs with context-specific regulatory elements to assess heritability enrichments and by explicitly prioritizing gene regulations underlying relevant tissues. Ablation studies, independent data validation, and comparison experiments with existing methods on GWAS of six phenotypes show that SpecVar can improve heritability enrichment, accurately detect relevant tissues, and reveal causal regulations. Furthermore, SpecVar correlates the relevance patterns for pairs of phenotypes and better reveals shared SNP associated regulations of phenotypes than existing methods. Studying GWAS of 206 phenotypes in UK-Biobank demonstrates that SpecVar leverages the context-specific regulatory network atlas to prioritize phenotypes' relevant tissues and shared heritability for biological and therapeutic insights. SpecVar provides a powerful way to interpret SNPs via context-specific regulatory networks and is available at https://github.com/AMSSwanglab/SpecVar.

Data availability

Codes and regulatory network resources are available at https://github.com/AMSSwanglab/SpecVar. Expression and chromatin accessibility data were summarized in Table S1. GWAS data used: GWAS summary statistics of LDL and TC were downloaded at http://csg.sph.umich.edu/willer/public/lipids2013/; GWAS summary statistics of EA (GCST006442), CP (GCST006572), BrainShape (GCST90012880-GCST90013164), and Face (GCST009464) were downloaded at GWAS catalog https://www.ebi.ac.uk/gwas/summary-statistics; GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-biobank. The LDSC genetic correlation and phenotypic correlation computed from individual phenotypic data were downloaded at https://ukbb-rg.hail.is/.

Article and author information

Author details

  1. Zhanying Feng

    Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhana Duren

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jingxue Xin

    Department of Statistics, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiuyue Yuan

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yaoxi He

    Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bing Su

    Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wing Hung Wong

    Department of Statistics, Stanford University, Palo Alto, United States
    For correspondence
    whwong@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Yong Wang

    Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
    For correspondence
    zyfeng@amss.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0695-5273

Funding

National Key Research and Development Program of China (2022YFA1004800,2020YFA0712402)

  • Yong Wang

Strategic Priority Research Program of the Chinese Academy of Science (XDPB17)

  • Yong Wang

CAS Young Scientists in Basic esearch (YSBR-077)

  • Yong Wang

National Natural Science Foundation of China (12025107,11871463,11688101)

  • Yong Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,178
    views
  • 125
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhanying Feng
  2. Zhana Duren
  3. Jingxue Xin
  4. Qiuyue Yuan
  5. Yaoxi He
  6. Bing Su
  7. Wing Hung Wong
  8. Yong Wang
(2022)
Heritability enrichment in context-specific regulatory networks improves phenotype-relevant tissue identification
eLife 11:e82535.
https://doi.org/10.7554/eLife.82535

Share this article

https://doi.org/10.7554/eLife.82535

Further reading

    1. Computational and Systems Biology
    Nobuhisa Umeki, Yoshiyuki Kabashima, Yasushi Sako
    Research Article

    The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.