Abstract

Recently-developed methods to predict three-dimensional protein structure with high accuracy have opened new avenues for genome and proteome research. We explore a new hypothesis in genome annotation, namely whether computationally predicted structures can help to identify which of multiple possible gene isoforms represents a functional protein product. Guided by protein structure predictions, we evaluated over 230,000 isoforms of human protein-coding genes assembled from over 10,000 RNA sequencing experiments across many human tissues. From this set of assembled transcripts, we identified hundreds of isoforms with more confidently predicted structure and potentially superior function in comparison to canonical isoforms in the latest human gene database. We illustrate our new method with examples where structure provides a guide to function in combination with expression and evolutionary evidence. Additionally, we provide the complete set of structures as a resource to better understand the function of human genes and their isoforms. These results demonstrate the promise of protein structure prediction as a genome annotation tool, allowing us to refine even the most highly-curated catalog of human proteins. More generally we demonstrate a practical, structure-guided approach that can be used to enhance the annotation of any genome.

Data availability

Gene identifiers for all predicted protein isoforms as well as pLDDT scores and evolutionary conservation data from mouse can be found in table S1. Predicted scores and GTEx expression data for all isoforms overlapping a MANE locus can be found in table S2. Data for the 401 alternate isoforms with evidence of relatively superior structure, and possibly superior function, can be found in table S3. Additionally, all data can be downloaded from the project website, isoform.io.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Markus J Sommer

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    markusjsommer@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3414-1875
  2. Sooyoung Cha

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7211-4603
  3. Ales Varabyou

    Center for Computational Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Natalia Rincon

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhwan Park

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilia Minkin

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mihaela Pertea

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Steinegger

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    For correspondence
    martin.steinegger@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  9. Steven L Salzberg

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    salzberg@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8859-7432

Funding

National Institutes of Health (R01-HG006677)

  • Steven L Salzberg

National Institutes of Health (R35-GM130151)

  • Steven L Salzberg

National Research Foundation of Korea (2019R1-A6A1-A10073437)

  • Martin Steinegger

National Research Foundation of Korea (2020M3-A9G7-103933)

  • Martin Steinegger

National Research Foundation of Korea (2021-R1C1-C102065)

  • Martin Steinegger

National Research Foundation of Korea (2021-M3A9-I4021220)

  • Martin Steinegger

Seoul National University (Creative-Pioneering Researchers Program)

  • Martin Steinegger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sommer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,869
    views
  • 514
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus J Sommer
  2. Sooyoung Cha
  3. Ales Varabyou
  4. Natalia Rincon
  5. Sukhwan Park
  6. Ilia Minkin
  7. Mihaela Pertea
  8. Martin Steinegger
  9. Steven L Salzberg
(2022)
Structure-guided isoform identification for the human transcriptome
eLife 11:e82556.
https://doi.org/10.7554/eLife.82556

Share this article

https://doi.org/10.7554/eLife.82556

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.