Abstract

Recently-developed methods to predict three-dimensional protein structure with high accuracy have opened new avenues for genome and proteome research. We explore a new hypothesis in genome annotation, namely whether computationally predicted structures can help to identify which of multiple possible gene isoforms represents a functional protein product. Guided by protein structure predictions, we evaluated over 230,000 isoforms of human protein-coding genes assembled from over 10,000 RNA sequencing experiments across many human tissues. From this set of assembled transcripts, we identified hundreds of isoforms with more confidently predicted structure and potentially superior function in comparison to canonical isoforms in the latest human gene database. We illustrate our new method with examples where structure provides a guide to function in combination with expression and evolutionary evidence. Additionally, we provide the complete set of structures as a resource to better understand the function of human genes and their isoforms. These results demonstrate the promise of protein structure prediction as a genome annotation tool, allowing us to refine even the most highly-curated catalog of human proteins. More generally we demonstrate a practical, structure-guided approach that can be used to enhance the annotation of any genome.

Data availability

Gene identifiers for all predicted protein isoforms as well as pLDDT scores and evolutionary conservation data from mouse can be found in table S1. Predicted scores and GTEx expression data for all isoforms overlapping a MANE locus can be found in table S2. Data for the 401 alternate isoforms with evidence of relatively superior structure, and possibly superior function, can be found in table S3. Additionally, all data can be downloaded from the project website, isoform.io.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Markus J Sommer

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    markusjsommer@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3414-1875
  2. Sooyoung Cha

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7211-4603
  3. Ales Varabyou

    Center for Computational Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Natalia Rincon

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhwan Park

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilia Minkin

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mihaela Pertea

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martin Steinegger

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    For correspondence
    martin.steinegger@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  9. Steven L Salzberg

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    salzberg@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8859-7432

Funding

National Institutes of Health (R01-HG006677)

  • Steven L Salzberg

National Institutes of Health (R35-GM130151)

  • Steven L Salzberg

National Research Foundation of Korea (2019R1-A6A1-A10073437)

  • Martin Steinegger

National Research Foundation of Korea (2020M3-A9G7-103933)

  • Martin Steinegger

National Research Foundation of Korea (2021-R1C1-C102065)

  • Martin Steinegger

National Research Foundation of Korea (2021-M3A9-I4021220)

  • Martin Steinegger

Seoul National University (Creative-Pioneering Researchers Program)

  • Martin Steinegger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sommer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,940
    views
  • 523
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus J Sommer
  2. Sooyoung Cha
  3. Ales Varabyou
  4. Natalia Rincon
  5. Sukhwan Park
  6. Ilia Minkin
  7. Mihaela Pertea
  8. Martin Steinegger
  9. Steven L Salzberg
(2022)
Structure-guided isoform identification for the human transcriptome
eLife 11:e82556.
https://doi.org/10.7554/eLife.82556

Share this article

https://doi.org/10.7554/eLife.82556

Further reading

    1. Genetics and Genomics
    Sophie Debaenst, Tamara Jarayseh ... Andy Willaert
    Research Article

    Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes. Six genes linked to severe recessive osteogenesis imperfecta (OI) and four associated with bone mineral density (BMD) from genome-wide association studies were analyzed using CRISPR/Cas9-based crispant screening in F0 mosaic founder zebrafish. Next-generation sequencing confirmed high indel efficiency (mean 88%), mimicking stable knock-out models. Skeletal phenotyping at 7, 14, and 90 days post-fertilization (dpf) using microscopy, Alizarin Red S staining, and microCT was performed. Larval crispants showed variable osteoblast and mineralization phenotypes, while adult crispants displayed consistent skeletal defects, including malformed neural and haemal arches, vertebral fractures and fusions, and altered bone volume and density. In addition, aldh7a1 and mbtps2 crispants experienced increased mortality due to severe skeletal deformities. RT-qPCR revealed differential expression of osteogenic markers bglap and col1a1a, highlighting their biomarker potential. Our results establish zebrafish crispant screening as a robust tool for FBD gene validation, combining skeletal and molecular analyses across developmental stages to uncover novel insights into gene functions in bone biology.

    1. Genetics and Genomics
    Khanh B Trang, Matthew C Pahl ... Struan FA Grant
    Research Article

    The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18, and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 – an inflammation-responsive gene in nerve nociceptors – was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.