Precise temporal control of neuroblast migration through combined regulation and feedback of a Wnt receptor

  1. Erik S Schild
  2. Shivam Gupta
  3. Clément Dubois
  4. Euclides E Fernandes Póvoa
  5. Marie-Anne Félix
  6. Andrew Mugler  Is a corresponding author
  7. Hendrik C Korswagen  Is a corresponding author
  1. University Medical Center Utrecht, Netherlands
  2. Purdue University West Lafayette, United States
  3. l'Ecole Normale Supérieure, CNRS, INSERM, France
  4. University of Pittsburgh, United States

Abstract

Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in C. elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage, and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.

Data availability

All data generated or analysed during this study are included in the manuscript and figures. Source datafiles containing the numerical data used to generate the figures can be accessed at https://github.com/erikschild/mig 1_timer_code

Article and author information

Author details

  1. Erik S Schild

    Hubrecht Institute, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Shivam Gupta

    Department of Physics and Astronomy, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Clément Dubois

    l'Ecole Normale Supérieure, CNRS, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Euclides E Fernandes Póvoa

    Hubrecht Institute, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0920-7783
  5. Marie-Anne Félix

    l'Ecole Normale Supérieure, CNRS, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew Mugler

    Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    andrew.mugler@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9367-7026
  7. Hendrik C Korswagen

    Hubrecht Institute, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    r.korswagen@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7931-4472

Funding

Human Frontier Science Program (RGP0030/2016)

  • Marie-Anne Félix
  • Andrew Mugler
  • Hendrik C Korswagen

National Science Foundation (PHY-1945018)

  • Shivam Gupta
  • Andrew Mugler

Simons Foundation (376198)

  • Shivam Gupta
  • Andrew Mugler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Schild et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 789
    views
  • 121
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erik S Schild
  2. Shivam Gupta
  3. Clément Dubois
  4. Euclides E Fernandes Póvoa
  5. Marie-Anne Félix
  6. Andrew Mugler
  7. Hendrik C Korswagen
(2023)
Precise temporal control of neuroblast migration through combined regulation and feedback of a Wnt receptor
eLife 12:e82675.
https://doi.org/10.7554/eLife.82675

Share this article

https://doi.org/10.7554/eLife.82675

Further reading

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.