Precise temporal control of neuroblast migration through combined regulation and feedback of a Wnt receptor

  1. Erik S Schild
  2. Shivam Gupta
  3. Clément Dubois
  4. Euclides E Fernandes Póvoa
  5. Marie-Anne Félix
  6. Andrew Mugler  Is a corresponding author
  7. Hendrik C Korswagen  Is a corresponding author
  1. University Medical Center Utrecht, Netherlands
  2. Purdue University West Lafayette, United States
  3. l'Ecole Normale Supérieure, CNRS, INSERM, France
  4. University of Pittsburgh, United States

Abstract

Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in C. elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage, and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.

Data availability

All data generated or analysed during this study are included in the manuscript and figures. Source datafiles containing the numerical data used to generate the figures can be accessed at https://github.com/erikschild/mig 1_timer_code

Article and author information

Author details

  1. Erik S Schild

    Hubrecht Institute, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Shivam Gupta

    Department of Physics and Astronomy, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Clément Dubois

    l'Ecole Normale Supérieure, CNRS, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Euclides E Fernandes Póvoa

    Hubrecht Institute, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0920-7783
  5. Marie-Anne Félix

    l'Ecole Normale Supérieure, CNRS, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew Mugler

    Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    andrew.mugler@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9367-7026
  7. Hendrik C Korswagen

    Hubrecht Institute, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    r.korswagen@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7931-4472

Funding

Human Frontier Science Program (RGP0030/2016)

  • Marie-Anne Félix
  • Andrew Mugler
  • Hendrik C Korswagen

National Science Foundation (PHY-1945018)

  • Shivam Gupta
  • Andrew Mugler

Simons Foundation (376198)

  • Shivam Gupta
  • Andrew Mugler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: August 12, 2022
  2. Accepted: May 12, 2023
  3. Accepted Manuscript published: May 15, 2023 (version 1)

Copyright

© 2023, Schild et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 124
    Page views
  • 39
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erik S Schild
  2. Shivam Gupta
  3. Clément Dubois
  4. Euclides E Fernandes Póvoa
  5. Marie-Anne Félix
  6. Andrew Mugler
  7. Hendrik C Korswagen
(2023)
Precise temporal control of neuroblast migration through combined regulation and feedback of a Wnt receptor
eLife 12:e82675.
https://doi.org/10.7554/eLife.82675

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Kai J Sandbrink, Pranav Mamidanna ... Alexander Mathis
    Research Article

    Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks'units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.

    1. Computational and Systems Biology
    Yujian Wen, Jielong Huang ... Hao Zhu
    Tools and Resources Updated

    Correlation between objects is prone to occur coincidentally, and exploring correlation or association in most situations does not answer scientific questions rich in causality. Causal discovery (also called causal inference) infers causal interactions between objects from observational data. Reported causal discovery methods and single-cell datasets make applying causal discovery to single cells a promising direction. However, evaluating and choosing causal discovery methods and developing and performing proper workflow remain challenges. We report the workflow and platform CausalCell (http://www.gaemons.net/causalcell/causalDiscovery/) for performing single-cell causal discovery. The workflow/platform is developed upon benchmarking four kinds of causal discovery methods and is examined by analyzing multiple single-cell RNA-sequencing (scRNA-seq) datasets. Our results suggest that different situations need different methods and the constraint-based PC algorithm with kernel-based conditional independence tests work best in most situations. Related issues are discussed and tips for best practices are given. Inferred causal interactions in single cells provide valuable clues for investigating molecular interactions and gene regulations, identifying critical diagnostic and therapeutic targets, and designing experimental and clinical interventions.