Evolved bacterial resistance to the chemotherapy gemcitabine modulates its efficacy in co-cultured cells

Abstract

Drug metabolism by the microbiome can influence anti-cancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.

Data availability

Barcode Sequencing and whole genome sequencing data have been deposited in NCBI SRA under the bioproject IDs PRJNA797841,PRJNA911755 and PRJNA855939.Supplementary Table 1 includes entire numerical data of the original barcoded genetic screen results and validation screen results.Supplementary Table 2 includes the all enriched and depleted pathways found in barcoded genetic screen visualized in Figure 1.Supplementary Table 3 includes the numerical data from Luria Delbruck Fluctuation experiment which is visualized on Supplementary Figure 6.Supplementary Table 4 includes the detailed annotation of genomic mutations found in all evolved clones shown in concentric circa plots at figure 4A.Supplementary Table 5 includes the list of inferred mutations from sanger sequencing files for the data used in Figure 4B.

The following data sets were generated

Article and author information

Author details

  1. Serkan Sayin

    Department of Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8776-2240
  2. Brittany Rosener

    Department of Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1836-8503
  3. Carmen G Li

    Department of Systems Biology, University of Massachusetts Medical School, Wortcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bao Ho

    Department of Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olga Ponomarova

    Department of Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6331-9949
  6. Doyle V Ward

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Albertha JM Walhout

    Department of Systems Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5587-3608
  8. Amir Mitchell

    Department of Systems Biology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    amir.mitchell@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9376-3987

Funding

National Institutes of Health (R35GM133775)

  • Amir Mitchell

National Institutes of Health (R01AI170722)

  • Amir Mitchell

National Institutes of Health (DK068429)

  • Albertha JM Walhout

National Institutes of Health (R35GM122502)

  • Albertha JM Walhout

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Sayin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,885
    views
  • 248
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Serkan Sayin
  2. Brittany Rosener
  3. Carmen G Li
  4. Bao Ho
  5. Olga Ponomarova
  6. Doyle V Ward
  7. Albertha JM Walhout
  8. Amir Mitchell
(2023)
Evolved bacterial resistance to the chemotherapy gemcitabine modulates its efficacy in co-cultured cells
eLife 12:e83140.
https://doi.org/10.7554/eLife.83140

Share this article

https://doi.org/10.7554/eLife.83140

Further reading

    1. Computational and Systems Biology
    Liqi Kang, Banghao Wu ... Liang Hong
    Research Article

    Artificial intelligence (AI) models have been used to study the compositional regularities of proteins in nature, enabling it to assist in protein design to improve the efficiency of protein engineering and reduce manufacturing cost. However, in industrial settings, proteins are often required to work in extreme environments where they are relatively scarce or even non-existent in nature. Since such proteins are almost absent in the training datasets, it is uncertain whether AI model possesses the capability of evolving the protein to adapt extreme conditions. Antibodies are crucial components of affinity chromatography, and they are hoped to remain active at the extreme environments where most proteins cannot tolerate. In this study, we applied an advanced large language model (LLM), the Pro-PRIME model, to improve the alkali resistance of a representative antibody, a VHH antibody capable of binding to growth hormone. Through two rounds of design, we ensured that the selected mutant has enhanced functionality, including higher thermal stability, extreme pH resistance, and stronger affinity, thereby validating the generalized capability of the LLM in meeting specific demands. To the best of our knowledge, this is the first LLM-designed protein product, which is successfully applied in mass production.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.