Beta-cell intrinsic dynamics rather than gap junction structure dictates subpopulations in the islet functional network

  1. Jennifer K Briggs
  2. Anne Gresch
  3. Isabella Marinelli
  4. JaeAnn M Dwulet
  5. David J Albers
  6. Vira Kravets
  7. Richard KP Benninger  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States
  2. University of Birmingham, United Kingdom

Abstract

Diabetes is caused by the inability of electrically coupled, functionally heterogeneous -cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have been used to represent synchronized oscillatory [Ca2+] dynamics and to study -cell subpopulations, which play an important role in driving islet function. The mechanism by which highly synchronized -cell subpopulations drive islet function is unclear. We used experimental and computational techniques to investigate the relationship between functional networks, structural (gap-junction) networks, and intrinsic -cell dynamics in slow and fast oscillating islets. Highly synchronized subpopulations in the functional network were differentiated by intrinsic dynamics, including metabolic activity and KATP channel conductance, more than structural coupling. Consistent with this, intrinsic dynamics were more predictive of high synchronization in the islet functional network as compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These results indicate that intrinsic dynamics rather than structure drive connections in the functional network and highly synchronized subpopulations, but gap junctions are still essential for overall network efficiency. These findings deepen our interpretation of functional networks and the formation of functional sub-populations in dynamic tissues such as the islet.

Data availability

Raw microscopy imaging data is available on the EMBL-EBI-supported BioImage Archive. Analysis code, Model code, and Simulated Data is available via GitHub at https://github.com/jenniferkbriggs/Functional_and_Structural_Networks.git

Article and author information

Author details

  1. Jennifer K Briggs

    Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8737-2215
  2. Anne Gresch

    Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Isabella Marinelli

    Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. JaeAnn M Dwulet

    Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2519-5193
  5. David J Albers

    Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vira Kravets

    Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5147-309X
  7. Richard KP Benninger

    Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    richard.benninger@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5063-6096

Funding

National Institutes of Health (R01 DK102950)

  • Richard KP Benninger

National Institutes of Health (R01 DK106412)

  • Richard KP Benninger

National Science Foundation (Graduate Research Fellowship DGE-1938058_Briggs)

  • Jennifer K Briggs

Juvenile Diabetes Research Foundation United States of America (3-PDF-2019-741-A-N)

  • Vira Kravets

Beckman Research Institute, City of Hope (UC24 DK104162)

  • Vira Kravets

Burroughs Wellcome Fund (25B1756)

  • Vira Kravets

National Institutes of Health (DK126360)

  • JaeAnn M Dwulet

National Institutes of Health (LM012734)

  • David J Albers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie S Satin, University of Michigan, United States

Ethics

Animal experimentation: All animal procedures were performed in accordance with guidelines established by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical campus (protocol 000024). All surgeries were performed under ketamine/xylazine anesthesia, with minimal discomfort to the animals.

Version history

  1. Preprint posted: February 9, 2022 (view preprint)
  2. Received: August 31, 2022
  3. Accepted: November 27, 2023
  4. Accepted Manuscript published: November 29, 2023 (version 1)
  5. Version of Record published: January 22, 2024 (version 2)

Copyright

© 2023, Briggs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 964
    views
  • 259
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer K Briggs
  2. Anne Gresch
  3. Isabella Marinelli
  4. JaeAnn M Dwulet
  5. David J Albers
  6. Vira Kravets
  7. Richard KP Benninger
(2023)
Beta-cell intrinsic dynamics rather than gap junction structure dictates subpopulations in the islet functional network
eLife 12:e83147.
https://doi.org/10.7554/eLife.83147

Share this article

https://doi.org/10.7554/eLife.83147

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.