Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody

  1. Angela M Phillips  Is a corresponding author
  2. Daniel P Maurer
  3. Caelan Brooks
  4. Thomas Dupic
  5. Aaron G Schmidt
  6. Michael M Desai  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Harvard Medical School, United States
  3. Harvard University, United States

Abstract

Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest1. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth2. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains3,4. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations - distributed across the variable light and heavy chains - that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the VH-VL interface is essential for binding a divergent H1. Collectively, this work is the first to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies5, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.

Data availability

Data and code used for this study are available at https://github.com/amphilli/CH65-comblib. Antibody affinity and expression data are also available in an interactive data browser at https://ch65-ma90-browser.netlify.app/. FASTQ files from high-throughput sequencing are deposited in the NCBI BioProject database under PRJNA886089. X-ray crystal structures of the Fabs reported here are available at the Protein Data Bank (8EK6 and 8EKH).

The following data sets were generated

Article and author information

Author details

  1. Angela M Phillips

    1Department of Organismic and Evolutionary Biology, University of California, San Francisco, San Francisco, United States
    For correspondence
    angela.phillips@ucsf.edu
    Competing interests
    Angela M Phillips, has recently consulted for Leyden Labs..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9806-7574
  2. Daniel P Maurer

    Department of Microbiology, Harvard Medical School, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Caelan Brooks

    Department of Physics, Harvard University, Cambridge, MA, United States
    Competing interests
    No competing interests declared.
  4. Thomas Dupic

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Aaron G Schmidt

    Department of Microbiology, Harvard Medical School, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Michael M Desai

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    mdesai@oeb.harvard.edu
    Competing interests
    Michael M Desai, recently consulted for Leyden Labs..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1150

Funding

Howard Hughes Medical Institute (Hanna H. Gray Postdoctoral Fellowship)

  • Angela M Phillips

Human Frontier Science Program (Postdoctoral Fellowship)

  • Thomas Dupic

National Institutes of Health (R01AI146779)

  • Aaron G Schmidt

National Institutes of Health (P01AI89618-A1)

  • Aaron G Schmidt

National Science Foundation (DMS-1764269)

  • Michael M Desai

National Science Foundation (DMS-1655960)

  • Michael M Desai

National Institutes of Health (GM104239)

  • Michael M Desai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Phillips et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,697
    views
  • 279
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela M Phillips
  2. Daniel P Maurer
  3. Caelan Brooks
  4. Thomas Dupic
  5. Aaron G Schmidt
  6. Michael M Desai
(2023)
Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody
eLife 12:e83628.
https://doi.org/10.7554/eLife.83628

Share this article

https://doi.org/10.7554/eLife.83628

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Catherine A Weibel, Andrew L Wheeler ... Joanna Masel
    Research Article

    The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an ‘effective population size’ is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species’ effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback–Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.