Abstract

The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion MRI from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.

Data availability

Developing Human Connectome project data is open-access and available for download following completion of a data-usage agreement via: http://www.developingconnectome.org/. Data will also be available at: https://nda.nih.gov/edit_collection.html?id=3955

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sian Wilson

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4617-3583
  2. Maximilian Pietsch

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucilio Cordero-Grande

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daan Christiaens

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alena Uus

    Department of Biomedical Engineering, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Vyacheslav R Karolis

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Vanessa Kyriakopoulou

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Kathleen Colford

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Anthony N Price

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jana Hutter

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Mary A Rutherford

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Emer J Hughes

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Serena J Counsell

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8033-5673
  14. Jacques-Donald Tournier

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Joseph V Hajnal

    Centre for the Developing Brain, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. A David Edwards

    Department of Biomedical Engineering, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4801-7066
  17. Jonathan O'Muicheartaigh

    Centre for the Developing Brain, King's College London, London, United Kingdom
    For correspondence
    jonathanom@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  18. Tomoki Arichi

    Centre for the Developing Brain, King's College London, London, United Kingdom
    For correspondence
    tomoki.arichi@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3550-1644

Funding

European Research Council (Seventh Framework Programme: FP/2007/2013)

  • Maximilian Pietsch
  • Lucilio Cordero-Grande
  • Daan Christiaens
  • Vyacheslav R Karolis
  • Vanessa Kyriakopoulou
  • Anthony N Price
  • Jana Hutter
  • Emer J Hughes
  • Jacques-Donald Tournier
  • Joseph V Hajnal
  • A David Edwards

Wellcome Trust (Sir Henry Dale Fellowship: 206675/Z/17/Z)

  • Jonathan O'Muicheartaigh

Medical Research Council Centre for Neurodevelopmental Disorders (MR/N0266063/1)

  • Sian Wilson
  • Mary A Rutherford
  • A David Edwards
  • Jonathan O'Muicheartaigh
  • Tomoki Arichi

Medical Research Council (Translation support fellowship: MR/V036874/1)

  • Vyacheslav R Karolis
  • Tomoki Arichi

Wellcome / EPSRC Centre for Biomedical Engineering, Kings College London (WT 203148/Z/16/Z)

  • Anthony N Price
  • Jana Hutter
  • Jacques-Donald Tournier
  • Joseph V Hajnal

Medical Research Council (Clinician Scientist Fellowship MR/P008712/1)

  • Tomoki Arichi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the UK Health Research Authority (Research Ethics Committee reference number: 14/LO/1169) and written parental consent was obtained in every case for imaging and open data release of the anonymized data.

Copyright

© 2023, Wilson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sian Wilson
  2. Maximilian Pietsch
  3. Lucilio Cordero-Grande
  4. Daan Christiaens
  5. Alena Uus
  6. Vyacheslav R Karolis
  7. Vanessa Kyriakopoulou
  8. Kathleen Colford
  9. Anthony N Price
  10. Jana Hutter
  11. Mary A Rutherford
  12. Emer J Hughes
  13. Serena J Counsell
  14. Jacques-Donald Tournier
  15. Joseph V Hajnal
  16. A David Edwards
  17. Jonathan O'Muicheartaigh
  18. Tomoki Arichi
(2023)
Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain
eLife 12:e83727.
https://doi.org/10.7554/eLife.83727

Share this article

https://doi.org/10.7554/eLife.83727

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.