CD8+ tissue-resident memory T cells induce oral lichen planus erosion via cytokine network

Abstract

CD8+ tissue-resident memory T (CD8+ Trm) cells play key roles in many immune-inflammation-related diseases. However, their characteristics in the pathological process of oral lichen planus (OLP) remains unclear. Therefore, we investigated the function of CD8+ Trm cells in the process of OLP. By using single-cell RNA sequencing profiling and spatial transcriptomics, we revealed that CD8+ Trm cells were predominantly located in the lamina propria adjacent to the basement membrane and were significantly increased in patients with erosive oral lichen planus (EOLP) compared to those with non-erosive OLP (NEOLP). Furthermore, these cells displayed enhanced cytokine production, including IFN-γ, TNF-α, and IL17, in patients with EOLP. And our clinical cohort of 1-year follow-up was also supported the above results in RNA level and protein level. In conclusion, our study provided a novel molecular mechanism for triggering OLP erosion by CD8+ Trm cells to secrete multiple cytokines, and new insight into the pathological development of OLP.

Data availability

The data of this study, including scRNA-seq data, ST data, and bulk RNA-seq data are available in the Gene Expression Omnibus (GEO) database, accession numbers GSE213345, GSE213346 and GSE211630.

The following data sets were generated

Article and author information

Author details

  1. Maofeng Qing

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7829-5564
  2. Dan Yang

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qianhui Shang

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiakuan Peng

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiaxin Deng

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lu Jiang

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jing Li

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  8. HongXia Dan

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yu Zhou

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    For correspondence
    812471898@qq.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Hao Xu

    State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
    For correspondence
    hao.xu@scu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5665-0139
  11. Qianming Chen

    State Key Laboratory of Oral Diseases, Zhejiang University, Hangzhou, China
    For correspondence
    qmchen@scu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5371-4432

Funding

National Natural Science Foundation of China (81730030)

  • Qianming Chen

National Natural Science Foundation of China (81730030)

  • Hao Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All individuals provided written informed consent and this study was supported by the Ethics Committee of West China Hospital of Stomatology Sichuan University [WCHSIRB-2019-167].

Copyright

© 2023, Qing et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,278
    views
  • 242
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maofeng Qing
  2. Dan Yang
  3. Qianhui Shang
  4. Jiakuan Peng
  5. Jiaxin Deng
  6. Lu Jiang
  7. Jing Li
  8. HongXia Dan
  9. Yu Zhou
  10. Hao Xu
  11. Qianming Chen
(2023)
CD8+ tissue-resident memory T cells induce oral lichen planus erosion via cytokine network
eLife 12:e83981.
https://doi.org/10.7554/eLife.83981

Share this article

https://doi.org/10.7554/eLife.83981

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Tackhoon Kim, Byung-Sun Park ... Timothy Lu
    Research Article

    Tyrosine kinases play a crucial role in cell proliferation and survival and are extensively investigated as targets for cancer treatment. However, the efficacy of most tyrosine kinase inhibitors (TKIs) in cancer therapy is limited due to resistance. In this study, we identify a synergistic combination therapy involving TKIs for the treatment of triple negative breast cancer. By employing pairwise tyrosine kinase knockout CRISPR screens, we identify FYN and KDM4 as critical targets whose inhibition enhances the effectiveness of TKIs, such as NVP-ADW742 (IGF-1R inhibitor), gefitinib (EGFR inhibitor), and imatinib (ABL inhibitor) both in vitro and in vivo. Mechanistically, treatment with TKIs upregulates the transcription of KDM4, which in turn demethylates H3K9me3 at FYN enhancer for FYN transcription. This compensatory activation of FYN and KDM4 contributes to the resistance against TKIs. FYN expression is associated with therapy resistance and persistence by demonstrating its upregulation in various experimental models of drug-tolerant persisters and residual disease following targeted therapy, chemotherapy, and radiotherapy. Collectively, our study provides novel targets and mechanistic insights that can guide the development of effective combinatorial targeted therapies, thus maximizing the therapeutic benefits of TKIs.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Christopher S McAllester, John E Pool
    Research Article

    Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3 R)K favoring survival and In(3 L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3 L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3 R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.