Evolution: Kin selection spreads
Charles Darwin considered the evolution of altruism to be a puzzle (Darwin, 1871). Altruistic acts benefit the recipient but may cost the actor, making it difficult to grasp how they could have evolved in a world where organisms compete to survive. Since individuals who act selfishly should fare better than those with altruistic tendencies, shouldn’t altruism be quickly selected against?
An elegant solution to this problem emerged in the 1930s, when mathematical arguments were laid out to show how genes that enable altruistic behaviors could spread through a population (Fisher, 1930; Haldane, 1932). These ideas were further developed in the 1960s by W.D. ‘Bill’ Hamilton, and later re-derived by George Price (Hamilton, 1964a; Hamilton, 1964b; Price, 1972).
This work showed that if the individual(s) receiving altruistic acts are genetically related to the altruistic actor, and if an altruistic act is sufficiently beneficial to the receivers relative to the costs to the actor, then altruistic behaviors can spread. This process was named ‘kin selection’ (Smith, 1964). A swathe of additional terms were then coined, including ‘indirect fitness’ (the benefits associated with promoting the offspring of relatives) and ‘inclusive fitness’ (the sum total of direct and indirect fitness). These theoretical developments set the stage for thousands of empirical studies of social behavior. Now, in eLife, Marie Charpentier and colleagues in France, Germany and Gabon – including joint first author Clémence Poirotte – report intriguing new evidence which deepens our understanding of how kin selection may take place within complex societies (Charpentier et al., 2022).
The study took place in a free-ranging population of mandrills living in Gabon. These large and colorful ground-dwelling monkeys live in societies structured around groups of closely related females who share a maternal ancestor, with mature males joining the group during the mating season to sire offspring. As for other social mammals, the health and success of an individual is often shaped by their family connections and how well they are integrated in to the community.
Building on their previous work, Charpentier et al. used machine learning to train a human face recognition algorithm on a large database of mandrill face pictures. The program was then used on the study population to show that infants with the same father look alike – more so than unrelated individuals or maternal half-siblings. Long-term behavioral observations then revealed that mothers spend more time close to infants whose faces resemble their own offspring’s. Such patterns may result in paternal half-siblings interacting with each other more frequently, and potentially may lead to the establishment of social relationships between paternally related infants. Lastly, Charpentier et al. build a theoretical model which demonstrates that mothers would gain fitness benefits by promoting altruistic acts among offspring sired by the same father.
Several factors could explain how increased associations may emerge between siblings who share a father. For example, these related infants may have more similar nutritional needs or digestive processes, and hence find themselves in the same feeding areas more often. Charpentier et al. address one such alternative hypothesis: that fathers may be driving these interactions, for example by spending more time with the mothers they have mated with, or with the babies they have sired. They show that this mechanism is unlikely to explain their results, in part because paternal care is thought to be rare or absent, and because many males are not present within the group outside of the mating season.
As the movement of mandrill infants is primarily determined by their mother, Charpentier et al. reason that it is most likely to be maternal behavior that drives interactions between similar-looking infants. While classic kin selection posits that a mother might increase her fitness by interacting with genetically related individuals, the team argues that female mandrills may ensure that their offspring has better survival outcomes by fostering relationships with non-kin individuals (their infant’s paternal half siblings). They term this process ‘second-order kin selection’.
The work by Charpentier et al. features a particularly rich and diverse set of methods, combining digital images, genetics, machine learning, long-term behavioral observations, and theoretical modeling. Together, these approaches result in an impressive analysis and argument which provoke new questions on how indirect fitness effects might manifest, and the kinds of social behaviors that might be explained by kin selection. Overall, this study adds an intriguing new layer to the mechanisms by which kin selection might operate, and to our understanding of the complexity of evolved social behaviors.
References
-
BookThe Descent of Man, and Selection in Relation to SexNew York: John Murray.https://doi.org/10.5962/bhl.title.24784
-
BookThe genetical theory of natural selectionClarendon Press.https://doi.org/10.5962/bhl.title.27468
-
Fisher’s “fundamental theorem” made clearAnnals of Human Genetics 36:129–140.https://doi.org/10.1111/j.1469-1809.1972.tb00764.x
Article and author information
Author details
Publication history
Copyright
© 2022, Higham
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 510
- views
-
- 44
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.
-
- Ecology
- Evolutionary Biology
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.