Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation

  1. Marco Caligaris
  2. Raffaele Nicastro  Is a corresponding author
  3. Zehan Hu
  4. Farida Tripodi
  5. Johannes Erwin Hummel
  6. Benjamin Pillet
  7. Marie-Anne Deprez
  8. Joris Winderickx
  9. Sabine Rospert
  10. Paola Coccetti
  11. Jörn Dengjel
  12. Claudio De Virgilio  Is a corresponding author
  1. University of Fribourg, Switzerland
  2. University of Milano-Bicocca, Italy
  3. University of Freiburg, Germany
  4. KU Leuven, Belgium

Abstract

The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallet et. al, 2015) reported that AMPK in yeast, i.e. Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-6 and Supplementary figures 1-3. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD037381

The following data sets were generated

Article and author information

Author details

  1. Marco Caligaris

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1732-7694
  2. Raffaele Nicastro

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    For correspondence
    raffaele.nicastro2@unifr.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5420-2228
  3. Zehan Hu

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Farida Tripodi

    Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Johannes Erwin Hummel

    Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin Pillet

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7313-4304
  7. Marie-Anne Deprez

    Functional Biology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Joris Winderickx

    Functional Biology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3133-7733
  9. Sabine Rospert

    Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Paola Coccetti

    Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Jörn Dengjel

    Department of Biology, University of Fribourg, Friborug, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4614
  12. Claudio De Virgilio

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    For correspondence
    Claudio.DeVirgilio@unifr.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8826-4323

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_166474/184671)

  • Marco Caligaris
  • Raffaele Nicastro
  • Benjamin Pillet
  • Claudio De Virgilio

Deutsche Forschungsgemeinschaft (RO 1028/5-2)

  • Sabine Rospert

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_184781)

  • Zehan Hu
  • Jörn Dengjel

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (316030_177088)

  • Zehan Hu
  • Jörn Dengjel

Fonds Wetenschappelijk Onderzoek (G069413)

  • Marie-Anne Deprez
  • Joris Winderickx

Fonds Wetenschappelijk Onderzoek (G0C7222N)

  • Marie-Anne Deprez
  • Joris Winderickx

Katholieke Universiteit Leuven (C14/17/063)

  • Marie-Anne Deprez
  • Joris Winderickx

Katholieke Universiteit Leuven (C14/21/095)

  • Marie-Anne Deprez
  • Joris Winderickx

Ministero dell'Università e della Ricerca (2020-ATE-0329)

  • Farida Tripodi
  • Paola Coccetti

Deutsche Forschungsgemeinschaft (Project-ID 403222702 - SFB 1381,TP B08)

  • Johannes Erwin Hummel
  • Sabine Rospert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Caligaris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,011
    views
  • 468
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco Caligaris
  2. Raffaele Nicastro
  3. Zehan Hu
  4. Farida Tripodi
  5. Johannes Erwin Hummel
  6. Benjamin Pillet
  7. Marie-Anne Deprez
  8. Joris Winderickx
  9. Sabine Rospert
  10. Paola Coccetti
  11. Jörn Dengjel
  12. Claudio De Virgilio
(2023)
Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation
eLife 12:e84319.
https://doi.org/10.7554/eLife.84319

Share this article

https://doi.org/10.7554/eLife.84319

Further reading

    1. Biochemistry and Chemical Biology
    Bernd K Gilsbach, Franz Y Ho ... Christian Johannes Gloeckner
    Research Article

    The Parkinson’s disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis–Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer–dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.