Mitochondrial protein import clogging as a mechanism of disease

  1. Liam P Coyne
  2. Xiaowen Wang
  3. Jiyao Song
  4. Ebbing de Jong
  5. Karin Schneider
  6. Paul T Massa
  7. Frank A Middleton
  8. Thomas Becker
  9. Xin Jie Chen  Is a corresponding author
  1. SUNY Upstate Medical University, United States
  2. University of Freiburg, Germany
  3. University of Bonn, Germany

Abstract

Mitochondrial biogenesis requires the import of >1,000 mitochondrial preproteins from the cytosol. Most studies on mitochondrial protein import are focused on the core import machinery. Whether and how the biophysical properties of substrate preproteins affect overall import efficiency is underexplored. Here, we show that protein traffic into mitochondria can be disrupted by amino acid substitutions in a single substrate preprotein. Pathogenic missense mutations in ADP/ATP translocase 1 (ANT1), and its yeast homolog Aac2, cause the protein to accumulate along the protein import pathway, thereby obstructing general protein translocation into mitochondria. This impairs mitochondrial respiration, cytosolic proteostasis and cell viability independent of ANT1's nucleotide transport activity. The mutations act synergistically, as double mutant Aac2/ANT1 cause severe clogging primarily at the Translocase of the Outer Membrane (TOM) complex. This confers extreme toxicity in yeast. In mice, expression of a super-clogger ANT1 variant led to neurodegeneration and an age-dependent dominant myopathy that phenocopy ANT1-induced human disease, suggesting clogging as a mechanism of disease. More broadly, this work implies the existence of uncharacterized amino acid requirements for mitochondrial carrier proteins to avoid clogging and subsequent disease.

Data availability

The small datasets generated in the study are included in the supplemental tables. The RNA-seq data has been deposited to NCBI Gene Expression Omnibus/Sequence Read Archive with the accession number GSE227295.

The following data sets were generated

Article and author information

Author details

  1. Liam P Coyne

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4480-126X
  2. Xiaowen Wang

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiyao Song

    Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ebbing de Jong

    Proteomics and Mass Spectrometry Core Facility, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Karin Schneider

    Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul T Massa

    Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Frank A Middleton

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Becker

    Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Xin Jie Chen

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    For correspondence
    chenx@upstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8488-6587

Funding

National Institute on Aging (R01AG063499)

  • Xin Jie Chen

National Institute on Aging (R01AG061204)

  • Xin Jie Chen

National Institute on Aging (F30AG060702)

  • Liam P Coyne

Deutsche Forschungsgemeinschaft (project ID 269925409)

  • Thomas Becker

Deutsche Forschungsgemeinschaft (BE 4679 2/2)

  • Thomas Becker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (D1600318) of the State University of New York Upstate Medical University. The protocol was approved by the Committee on the Ethics of Animal Experiments of SUNY Upstate Medical University (Permit Number: #268).

Copyright

© 2023, Coyne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,674
    views
  • 534
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liam P Coyne
  2. Xiaowen Wang
  3. Jiyao Song
  4. Ebbing de Jong
  5. Karin Schneider
  6. Paul T Massa
  7. Frank A Middleton
  8. Thomas Becker
  9. Xin Jie Chen
(2023)
Mitochondrial protein import clogging as a mechanism of disease
eLife 12:e84330.
https://doi.org/10.7554/eLife.84330

Share this article

https://doi.org/10.7554/eLife.84330