On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium

  1. Wei Mao
  2. Lars D Renner  Is a corresponding author
  3. Charlène Cornilleau
  4. Ines Li de la Sierra-Gallay
  5. Sana Afensiss
  6. Sarah Benlamara
  7. Yoan Ah-Seng
  8. Herman Van Tilbeurgh
  9. Sylvie Nessler  Is a corresponding author
  10. Aurélie Bertin  Is a corresponding author
  11. Arnaud Chastanet  Is a corresponding author
  12. Rut Carballido-Lopez  Is a corresponding author
  1. Micalis Institute, France
  2. Leibniz Institute of Polymer Research, Germany
  3. CNRS Université Paris-Saclay, France
  4. Institut Curie, France

Abstract

In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.

Data availability

Protein structures data have been deposited in PDB under the accession codes 7ZPT and 8AZG.

The following data sets were generated

Article and author information

Author details

  1. Wei Mao

    Micalis Institute, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0443-651X
  2. Lars D Renner

    Leibniz Institute of Polymer Research, Dresden, Germany
    For correspondence
    renner@ipfdd.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Charlène Cornilleau

    Micalis Institute, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Ines Li de la Sierra-Gallay

    Institute for Integrative Biology of the Cell, CNRS Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2770-7439
  5. Sana Afensiss

    Micalis Institute, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Benlamara

    Micalis Institute, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoan Ah-Seng

    Micalis Institute, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Herman Van Tilbeurgh

    Institute for Integrative Biology of the Cell, CNRS Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Sylvie Nessler

    Institute for Integrative Biology of the Cell, CNRS Université Paris-Saclay, Gif-sur-Yvette, France
    For correspondence
    Sylvie.NESSLER@i2bc.paris-saclay.fr
    Competing interests
    The authors declare that no competing interests exist.
  10. Aurélie Bertin

    Laboratoire Physico Chimie Curie, Institut Curie, Paris, France
    For correspondence
    aurelie.bertin@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3400-6887
  11. Arnaud Chastanet

    Micalis Institute, Jouy-en-Josas, France
    For correspondence
    arnaud.chastanet@inrae.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0320-4861
  12. Rut Carballido-Lopez

    Micalis Institute, Jouy-en-Josas, France
    For correspondence
    rut.carballido-lopez@inrae.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9383-8811

Funding

European Research Council (ERC-SG,311231)

  • Rut Carballido-Lopez

European Research Council (ERC-CG,772178)

  • Rut Carballido-Lopez

Agence Nationale de la Recherche (ANR-11-LABX0038)

  • Aurélie Bertin

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02)

  • Aurélie Bertin

VolkswagenStiftung

  • Lars D Renner

Agence Nationale de la Recherche (ANR-10-INSB-05-05)

  • Sylvie Nessler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Mao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,064
    views
  • 214
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Mao
  2. Lars D Renner
  3. Charlène Cornilleau
  4. Ines Li de la Sierra-Gallay
  5. Sana Afensiss
  6. Sarah Benlamara
  7. Yoan Ah-Seng
  8. Herman Van Tilbeurgh
  9. Sylvie Nessler
  10. Aurélie Bertin
  11. Arnaud Chastanet
  12. Rut Carballido-Lopez
(2023)
On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium
eLife 12:e84505.
https://doi.org/10.7554/eLife.84505

Share this article

https://doi.org/10.7554/eLife.84505

Further reading

    1. Biochemistry and Chemical Biology
    Bernd K Gilsbach, Franz Y Ho ... Christian Johannes Gloeckner
    Research Article

    The Parkinson’s disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis–Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer–dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.