Health: Understanding the links between cardiovascular and psychiatric conditions
Cardiovascular diseases are the leading cause of mortality worldwide, accounting for approximately 32% of all deaths globally. Mental illnesses are similarly common, with approximately one in every eight individuals living with a mental health disorder in 2019 (World Health Organization, 2022). Given their high prevalence, these conditions are likely to exist alongside each other and this co-occurrence warrants rigorous scientific investigation.
The relationship between heart disease and mental illness is complex and bidirectional. For example, being diagnosed with heart failure can understandably cause stress and despair, and consequently elevate an individual’s risk of developing a major depressive disorder (Hare et al., 2014). Conversely, depressive disorders are known to manifest as sleep disturbances, reduced levels of physical activity and difficulty following health recommendations — all factors linked to an increased likelihood of developing cardiovascular conditions.
Evidence exists that the risks for mental and cardiovascular diseases increase in tandem (Schöttke and Giabbiconi, 2015; Ziegelstein, 2001). However, this body of work has important limitations that hinder drawing meaningful conclusions. For example, some studies only capture patient information at a single point in time, making it difficult to establish whether it was the cardiovascular or the psychiatric condition which appeared first in individuals with both illnesses (Almhdawi et al., 2021). In addition, research in this area has mainly focused on the relationship between cardiovascular health and depression or generalized anxiety disorder, with little attention paid to other psychiatric conditions such as psychosis and bipolar disorder. Lastly, no studies have so far adequately accounted for family-related mechanisms that may be driving any observed associations, such as certain genetic backgrounds or early childhood environments. Now, in eLife, Unnur Valdimarsdóttir, Qing Shen and colleagues report the results of a study designed to address some of these limitations (Shen et al., 2022).
The team (who are based in China, the United States, Iceland and Sweden) used the Swedish Patient Register to identify nearly 0.9 million individuals recently diagnosed with cardiovascular disease, and with no prior history of psychiatric disorders. Throughout the study period, these patients were then followed until they first received a mental health diagnosis within the study period. In addition, the study included a remarkable family-comparison design, whereby participants’ siblings who had no mental health or cardiovascular conditions at the time of the diagnosis were also tracked over time. The risk of developing any psychiatric condition in both patients and siblings could therefore be compared. This approach allowed Shen et al. to control for familial factors that are often difficult to measure and, if left unaccounted for in study design, could contribute to a spurious association between cardiovascular disorders and subsequent mental illness.
The results indicate that, compared to their unaffected siblings, study participants were 2.7 times more at risk of developing a psychiatric disorder within a year of having received their diagnoses of cardiovascular illness (even after accounting for familial factors, prior history of psychiatric illness and sociodemographic variables such as age, sex or socioeconomic status). Similar associations were observed when study participants were compared to non-sibling controls. In addition, individuals who developed a psychiatric disorder during that first year had a 55% increased risk of dying from a heart-related condition compared to patients who retained good mental health. In this cohort, the co-occurrence of any mental illness therefore negatively impacted the course of cardiovascular diseases.
Despite its strengths, this work also has some limitations. Notably, smoking behaviour and alcohol consumption were not adequately controlled for, despite being directly and independently associated with cardiovascular disease and mental illnesses (Dani and Harris, 2005; Mukamal, 2006). Not accounting for either of these lifestyle factors could overestimate the true relationship between these two conditions. In addition, various psychiatric subtypes with distinct phenotypes were combined — for example, all types of anxiety conditions, from generalized anxiety to post-traumatic stress disorder, were merged into a single mental health outcome. Each of these disorders is likely to have specific associations with cardiovascular health, which could not be captured by this experimental design.
The work by Shen et al. highlights how important it is to monitor psychiatric symptoms while treating cardiovascular diseases. Their findings should encourage the scientific community to fill existing knowledge gaps. In particular, it is becoming increasingly clear that evidence derived from high-income countries, where most research is conducted, cannot be directly translated to other settings. For instance, age-standardized mortality rates for cardiovascular disease are mostly decreasing in European and North American populations, while suicide mortality (as an indicator of mental health burdens) rises with age. By contrast, cardiac mortality rates are rising in certain low- and middle-income countries such as Mexico and India, with suicide mortality occurring at younger ages (Reynales-Shigematsu et al., 2018; Ke et al., 2018; World Health Organization, 2022; Phillips and Cheng, 2012). Context-specific data will therefore need to be collected for cardiovascular diseases to be appropriately managed across the world through integrated healthcare approaches.
References
-
Post-stroke depression, anxiety, and stress symptoms and their associated factors: a cross-sectional studyNeuropsychological Rehabilitation 31:1091–1104.https://doi.org/10.1080/09602011.2020.1760893
-
Nicotine addiction and comorbidity with alcohol abuse and mental illnessNature Neuroscience 8:1465–1470.https://doi.org/10.1038/nn1580
-
Depression and cardiovascular disease: a clinical reviewEuropean Heart Journal 35:1365–1372.https://doi.org/10.1093/eurheartj/eht462
-
The effects of smoking and drinking on cardiovascular disease and risk factorsAlcohol Research & Health 29:199–202.
-
The changing global face of suicideLancet 379:2318–2319.https://doi.org/10.1016/S0140-6736(12)60913-1
-
Post-stroke depression and post-stroke anxiety: prevalence and predictorsInternational Psychogeriatrics 27:1805–1812.https://doi.org/10.1017/S1041610215000988
-
Depression after myocardial infarctionCardiology in Review 9:45–51.https://doi.org/10.1097/00045415-200101000-00009
Article and author information
Author details
Publication history
Copyright
© 2022, Amarasekera and Jha
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 590
- views
-
- 53
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.