Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans

  1. Cori K Cahoon
  2. Colette M Richter
  3. Amelia E Dayton
  4. Diana E Libuda  Is a corresponding author
  1. University of Oregon, United States

Abstract

In sexually reproducing organisms, germ cells faithfully transmit the genome to the next generation by forming haploid gametes, such as eggs and sperm. Although most meiotic proteins are conserved between eggs and sperm, many aspects of meiosis are sexually dimorphic including the regulation of recombination. The synaptonemal complex (SC), a large ladder-like structure that forms between homologous chromosomes, is essential for regulating meiotic chromosome organization and promoting recombination. To assess whether sex-specific differences in the SC underpin sexually dimorphic aspects of meiosis, we examined Caenorhabditis elegans SC central region proteins (known as SYP proteins) in oogenesis and spermatogenesis and uncovered sex-specific roles for the SYPs in regulating meiotic recombination. We find that SC composition, specifically SYP-2, SYP-3, SYP-5 and SYP-6, is regulated by sex-specific mechanisms throughout meiotic prophase I. During pachytene, both oocytes and spermatocytes differentially regulate the stability of SYP-2 and SYP-3 within an assembled SC. Further, we uncover that the relative amount of SYP-2 and SYP-3 within the SC is independently regulated in both a sex-specific and a recombination-dependent manner. Specifically, we find that SYP-2 regulates the early steps of recombination in both sexes, while SYP-3 controls the timing and positioning of crossover recombination events across the genomic landscape in only oocytes. Finally, we find that SYP-2 and SYP-3 dosage can influence the composition of the other SYPs in the SC via sex-specific mechanisms during pachytene. Taken together, we demonstrate dosage-dependent regulation of individual SC components with sex-specific functions in recombination. These sexual dimorphic features of the SC provide insights into how spermatogenesis and oogenesis adapted similar chromosome structures to differentially regulate and execute recombination.

Data availability

Source Data have been provided for the numerical values plotted in each figure: Figure 1 source data (Figure 1 source data.xlsx), Figure 1 - figure supplement 3 source data (Figure 1 - figure supplement 3 source data.xlsx), Figure 2 source data (Figure 2 source data.xlsx), Figure 2 - figure supplement 2 source data (Figure 2- figure supplement 2 source data.zip), Figure 3 source data (Figure 3 source data.xlsx), Figure 4 source data (Figure 4 source data.xlsx), Figure 4 - figure supplement 1 source data (Figure 4 - figure supplement 1 source data.zip), Figure 5 source data 1 (Figure 5 source data.xlsx), Figure 5 - figure supplement 3 source data (Figure 5 - figure supplement 3.xlsx), Figure 6 source data 1 (Table 1), Figure 6 - figure supplement 1 source data (Figure 6 - figure supplement 2), Figure 7 source data (Figure 7 source data.xlsx), and Figure 8 source data (Figure 8 source data.xlsx).

Article and author information

Author details

  1. Cori K Cahoon

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7888-2838
  2. Colette M Richter

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amelia E Dayton

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Diana E Libuda

    Department of Biology, University of Oregon, Eugene, United States
    For correspondence
    dlibuda@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4944-1814

Funding

National Institute of General Medical Sciences (R35GM128890)

  • Diana E Libuda

Eunice Kennedy Shriver National Institute of Child Health and Human Development (1K99HD109505)

  • Cori K Cahoon

Jane Coffin Childs Memorial Fund for Medical Research

  • Cori K Cahoon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Akira Shinohara, Osaka University, Japan

Version history

  1. Preprint posted: October 14, 2022 (view preprint)
  2. Received: October 28, 2022
  3. Accepted: October 2, 2023
  4. Accepted Manuscript published: October 5, 2023 (version 1)
  5. Version of Record published: October 27, 2023 (version 2)

Copyright

© 2023, Cahoon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 885
    views
  • 174
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cori K Cahoon
  2. Colette M Richter
  3. Amelia E Dayton
  4. Diana E Libuda
(2023)
Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans
eLife 12:e84538.
https://doi.org/10.7554/eLife.84538

Share this article

https://doi.org/10.7554/eLife.84538

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.