Structure-function analysis of Lactiplantibacillus plantarum DltE& reveals D-alanylated lipoteichoic acids as direct cues supporting Drosophila juvenile growth

  1. Nikos Nikolopoulos
  2. Renata Matos
  3. Stephanie Ravaud
  4. Pascal Courtin
  5. Houssam Akherraz
  6. Simon Palussiere
  7. Virginie Gueguen-Chaignon
  8. Marie Salomon-Mallet
  9. Alain Guillot
  10. Yann Guerardel
  11. Marie-Pierre Chapot-Chartier  Is a corresponding author
  12. Christophe Grangeasse  Is a corresponding author
  13. François Leulier  Is a corresponding author
  1. CNRS UMR 5086, Universite Claude Bernard, France
  2. Ecole Normale Supérieure de Lyon, France
  3. Universite Paris-Saclay, INRAE, France
  4. CNRS UAR3444, INSERM US8, Universite Claude Bernard, France
  5. Univ Lille, CNRS, UMR 8576, France

Abstract

Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.

Data availability

-Diffraction data have been deposited in PDB under the accession codes 8AGR/8AIK/8AJI/8AKH-All data generated during this study are included in the manuscript and supporting file and a single Source Data file has been provided.

The following data sets were generated

Article and author information

Author details

  1. Nikos Nikolopoulos

    Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Universite Claude Bernard, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Renata Matos

    Institut de Génomique Fonctionnelle d eLyon, Ecole Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7480-6099
  3. Stephanie Ravaud

    Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Universite Claude Bernard, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5867-0785
  4. Pascal Courtin

    Micalis Institute, Universite Paris-Saclay, INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Houssam Akherraz

    Institut de Genomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Simon Palussiere

    Micalis Institute, Universite Paris-Saclay, INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Virginie Gueguen-Chaignon

    Protein Science Facility, CNRS UAR3444, INSERM US8, Universite Claude Bernard, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie Salomon-Mallet

    Micalis Institute, Universite Paris-Saclay, INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Alain Guillot

    Micalis Institute, Universite Paris-Saclay, INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Yann Guerardel

    Unite de Glycobiologie Structurale et Fonctionnelle, Univ Lille, CNRS, UMR 8576, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie-Pierre Chapot-Chartier

    Micalis Institute, Universite Paris-Saclay, INRAE, Jouy-en-Josas, France
    For correspondence
    marie-pierre.chapot-chartier@inrae.fr
    Competing interests
    The authors declare that no competing interests exist.
  12. Christophe Grangeasse

    Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Universite Claude Bernard, Lyon, France
    For correspondence
    christophe.grangeasse@ibcp.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. François Leulier

    Institut de Génomique Fonctionnelle d eLyon, Ecole Normale Supérieure de Lyon, Lyon, France
    For correspondence
    francois.leulier@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4542-3053

Funding

Agence Nationale de la Recherche (ANR-18-CE15-0011)

  • Nikos Nikolopoulos
  • Renata Matos
  • Stephanie Ravaud
  • Pascal Courtin
  • Houssam Akherraz
  • Simon Palussiere
  • Virginie Gueguen-Chaignon
  • Marie Salomon-Mallet
  • Alain Guillot
  • Yann Guerardel
  • Marie-Pierre Chapot-Chartier
  • Christophe Grangeasse
  • François Leulier

Fondation pour la Recherche Médicale (DEQ20180839196)

  • Renata Matos
  • Houssam Akherraz
  • François Leulier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Nikolopoulos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,241
    views
  • 210
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikos Nikolopoulos
  2. Renata Matos
  3. Stephanie Ravaud
  4. Pascal Courtin
  5. Houssam Akherraz
  6. Simon Palussiere
  7. Virginie Gueguen-Chaignon
  8. Marie Salomon-Mallet
  9. Alain Guillot
  10. Yann Guerardel
  11. Marie-Pierre Chapot-Chartier
  12. Christophe Grangeasse
  13. François Leulier
(2023)
Structure-function analysis of Lactiplantibacillus plantarum DltE& reveals D-alanylated lipoteichoic acids as direct cues supporting Drosophila juvenile growth
eLife 12:e84669.
https://doi.org/10.7554/eLife.84669

Share this article

https://doi.org/10.7554/eLife.84669

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.