Antibiotics: Teaching old drugs new tricks

Understanding the mechanism by which streptomycin binds to the small subunit of the mitoribosome may help researchers design less toxic derivatives of this antibiotic.
  1. Alexandre Faille
  2. Alan J Warren  Is a corresponding author
  1. Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
  2. The Department of Haematology, University of Cambridge, United Kingdom
  3. Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom

Most of the classes of antibiotics used today were discovered between the 1940s and 1960s. Over the decades, the widespread use of antibiotics and lack of new drugs has led to a rise in antibiotic resistant bacteria, making it increasingly challenging to treat common infections.

Streptomycin was the first discovered aminoglycoside antibiotic, originally derived from the bacterium Streptomyces griseus, and became the primary treatment for tuberculosis and other bacterial infections (Schatz et al., 1944). It eliminates bacteria by irreversibly binding to the small subunit of the machine responsible for producing proteins known as the ribosome, leading to an impaired synthesis of proteins and ultimately the death of the bacterial cell. But streptomycin can also bind to an evolutionarily related ribosome in the mitochondria of humans. This can result in hearing problems known as ototoxicity, which can potentially lead to deafness. Therefore, streptomycin is currently only used as an adjunct treatment if necessary (Waters and Tadi, 2022).

Despite these toxic side effects, the widespread emergence of antibiotic resistance calls for desperate measures and streptomycin is once again in demand to target the bacterium that causes tuberculosis, which has also become resistant to a variety of treatments (Cohen et al., 2020). A better knowledge of the molecular mechanism that enables streptomycin to bind to the human mitochondrial ribosome may help researchers find ways to reduce the ototoxic effects caused by the drug.

Now, in eLife, Alexey Amunts and colleagues from the University of Sweden – including Yuzuru Itoh, Vivek Singh, Anas Khawaja as joint first authors – report new insights into the structure and function of the small ribosomal subunit in human mitochondria that binds to streptomycin (Itoh et al., 2022a). Itoh et al. used a method called single particle electron cryo-microscopy (cryo-EM) to analyse the structure of the mitochondrial ribosome in humans, also known as the mitoribosome. This technique generated a much higher resolution structure of streptomycin bound to the bacterial ribosome than previous X-ray crystallography or previous cryo-EM studies.

The experiments revealed that several physiologically important molecules and clusters of iron and sulphur are integrated into the small subunit of the mitoribosome. This suggests that as the mitoribosome is assembled, these clusters may stabilise interactions between proteins in regions where ribosomal RNA has been deleted over the course of evolution.

The study also indicates a potential regulatory link between the three main metabolic pathways in mitochondria: mitoribosome biogenesis, iron-sulfur assembly, and fatty-acid synthesis. Dysfunctional mitochondria are linked to many diseases, including muscular diseases and Friedreich’s ataxia, and the chemical-level detail provided by Itoh et al. lays the foundation for future efforts to better understand the role of mitochondria in human health and disease (Pirinen et al., 2020; Gomes et al., 2013; Marmolino, 2011).

A highlight of the study by Itoh et al. is the elucidation of the detailed interactions between streptomycin and the mitoribosome (Figure 1). The team showed that the aldehyde group found on the streptose sugar moiety of streptomycin is hydrated to a geminal diol (an organic compound with two hydroxyl groups bound to the same carbon) prior to binding to the ribosome. This hydration enables multiple hydrogen bonding interactions between streptomycin and the phosphate backbone of the ribosomal RNA.

Illustration of how the aminoglycoside antibiotic streptomycin causes ototoxicity.

Ototoxicity is a condition where drugs, such as streptomycin, can cause hearing problems and even deafness. It has previously been shown that patients, who are more likely to get ototoxicity, have mutations in the nucleotides located in the mitochondrial ribosome, or mitoribosome. These mutations introduce new RNA base pairings that harden the structure of the small unit of the ribosome (grey). Itoh et al. have shown that streptomycin (red and blue sticks, experimental cryo-EM map is shown as mesh) binds directly to the nucleotides A1555 and C1556 (orange) of the small subunit of the mitoribosome via hydrogen bonds (dashed grey lines), making it even more rigid. This impairs the ribosome’s ability to translate mRNA into proteins (pink ladder mRNA cartoon has been superimposed from the E. coli ribosome structure PDB: 7K00 to show where the mRNA is likely positioned in relation to the streptomycin).

The work by Itoh et al. also provides new insights into how streptomycin can cause ototoxicity (Figure 1). Sequencing the mitochondrial DNA of patients suffering from hearing loss has previously revealed frequent mutations in specific nucleotides, which introduce new RNA base pairings that locally rigidify the structure of the mitoribosome (Gao et al., 2017). The researchers found that streptomycin adds to this rigidification by directly binding to one of these nucleotides, which in turn impairs the ribosome’s ability to translate messenger RNA into protein. These important new structural insights explain how hearing loss may be induced or aggravated by streptomycin and may facilitate the design of less toxic aminoglycoside antibiotic derivatives in the future.

Moreover, previous studies have suggested that antibiotics that induce mitochondrial dysfunction could be modified to treat some cancers (Karp and Lyakhovich, 2022). Cancer stem cells depend on oxidative phosphorylation, which can be blocked with certain antibiotics. For example, the antibiotic drug tigecycline can inhibit the translation of mitochondrial proteins and has been proposed as a therapeutic strategy for acute myeloid leukaemia (Skrtić et al., 2011). The exciting study from Itoh et al. may allow other ‘off-target’ antibiotics to be repurposed as cancer therapeutics by harnessing the three-dimensional structure of the drug bound to its biomolecular target for rational drug design. Unravelling the molecular mechanisms that drive the assembly of the mitoribosome is also a fertile area of research that promises to yield additional new targets for cancer therapy beyond the mature mitoribosome (Itoh et al., 2022b).

References

Article and author information

Author details

  1. Alexandre Faille

    Alexandre Faille is in the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0714-4133
  2. Alan J Warren

    Alan J Warren is in the Department of Haematology and the Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom

    For correspondence
    ajw1000@cam.ac.uk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9277-4553

Publication history

  1. Version of Record published: December 8, 2022 (version 1)

Copyright

© 2022, Faille and Warren

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 817
    views
  • 86
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre Faille
  2. Alan J Warren
(2022)
Antibiotics: Teaching old drugs new tricks
eLife 11:e84702.
https://doi.org/10.7554/eLife.84702

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.