Kinetochore-fiber lengths are maintained locally but coordinated globally by polesin the mammalian spindle

  1. Manuela Richter  Is a corresponding author
  2. Lila Neahring
  3. Jinghui Tao
  4. Renaldo Sutanto
  5. Nathan H Cho
  6. Sophie Dumont  Is a corresponding author
  1. University of California - San Francisco, United States

Abstract

At each cell division, nanometer-scale components self-organize to build a micron-scale spindle. In mammalian spindles, microtubule bundles called kinetochore-fibers attach to chromosomes and focus into spindle poles. Despite evidence suggesting that poles can set spindle length, their role remains poorly understood. In fact, many species do not have spindle poles. Here, we probe the pole's contribution to mammalian spindle length, dynamics, and function by inhibiting dynein to generate spindles whose kinetochore-fibers do not focus into poles, yet maintain a metaphase steady-state length. We find that unfocused kinetochore-fibers have a mean length indistinguishable from control, but a broader length distribution, and reduced length coordination between sisters and neighbors. Further, we show that unfocused kinetochore-fibers, like control, can grow back to their steady-state length if acutely shortened by drug treatment or laser ablation: they recover their length by tuning their end dynamics, albeit slower due to their reduced baseline dynamics. Thus, kinetochore-fiber dynamics are regulated by their length, not just pole-focusing forces. Finally, we show that spindles with unfocused kinetochore-fibers can segregate chromosomes but fail to correctly do so. We propose that mammalian spindle length emerges locally from individual k-fibers while spindle poles globally coordinate k-fibers across space and time.

Data availability

We provide all source data and analyzed data for all figures. We provide source code for Figure 1.

Article and author information

Author details

  1. Manuela Richter

    Tetrad Graduate Program, University of California - San Francisco, San Francisco, United States
    For correspondence
    manuela.richter@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Lila Neahring

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2272-8732
  3. Jinghui Tao

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Renaldo Sutanto

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1252-1482
  5. Nathan H Cho

    Tetrad Graduate Program, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0110-1343
  6. Sophie Dumont

    Department of Cell and Tissue Biology, University of California - San Francisco, San Francisco, United States
    For correspondence
    sophie.dumont@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1523

Funding

Achievement Rewards for College Scientists Foundation (Graduate Student Scholarship)

  • Manuela Richter

Hertz Foundation (Hertz Fellowship)

  • Lila Neahring

American Heart Association (Predoctoral Fellowship)

  • Nathan H Cho

University of California, San Francisco (Discovery Fellows Program)

  • Lila Neahring
  • Nathan H Cho

National Science Foundation (Graduate Research Fellowship Program)

  • Manuela Richter

University of California, San Francisco (PIBS Bishop Fellowship)

  • Manuela Richter

National Institutes of Health (NIHR35GM136420)

  • Sophie Dumont

National Science Foundation (NSF CAREER 1554139)

  • Sophie Dumont

National Science Foundation (NSF 1548297 Center for Cellular Construction)

  • Sophie Dumont

Chan Zuckerberg Initiative (Chan Zuckerberg Biohub)

  • Sophie Dumont

University of California, San Francisco (Byers Award)

  • Sophie Dumont

University of California, San Francisco (Program for Breakthrough Biomedical Research (PBBR))

  • Sophie Dumont

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Richter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 931
    views
  • 145
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manuela Richter
  2. Lila Neahring
  3. Jinghui Tao
  4. Renaldo Sutanto
  5. Nathan H Cho
  6. Sophie Dumont
(2023)
Kinetochore-fiber lengths are maintained locally but coordinated globally by polesin the mammalian spindle
eLife 12:e85208.
https://doi.org/10.7554/eLife.85208

Share this article

https://doi.org/10.7554/eLife.85208

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.