Kinetochore-fiber lengths are maintained locally but coordinated globally by poles in the mammalian spindle

  1. Manuela Richter  Is a corresponding author
  2. Lila Neahring
  3. Jinghui Tao
  4. Renaldo Sutanto
  5. Nathan H Cho
  6. Sophie Dumont  Is a corresponding author
  1. University of California - San Francisco, United States

Abstract

At each cell division, nanometer-scale components self-organize to build a micron-scale spindle. In mammalian spindles, microtubule bundles called kinetochore-fibers attach to chromosomes and focus into spindle poles. Despite evidence suggesting that poles can set spindle length, their role remains poorly understood. In fact, many species do not have spindle poles. Here, we probe the pole's contribution to mammalian spindle length, dynamics, and function by inhibiting dynein to generate spindles whose kinetochore-fibers do not focus into poles, yet maintain a metaphase steady-state length. We find that unfocused kinetochore-fibers have a mean length indistinguishable from control, but a broader length distribution, and reduced length coordination between sisters and neighbors. Further, we show that unfocused kinetochore-fibers, like control, can grow back to their steady-state length if acutely shortened by drug treatment or laser ablation: they recover their length by tuning their end dynamics, albeit slower due to their reduced baseline dynamics. Thus, kinetochore-fiber dynamics are regulated by their length, not just pole-focusing forces. Finally, we show that spindles with unfocused kinetochore-fibers can segregate chromosomes but fail to correctly do so. We propose that mammalian spindle length emerges locally from individual k-fibers while spindle poles globally coordinate k-fibers across space and time.

Data availability

We provide all source data and analyzed data for all figures. We provide source code for Figure 1.

Article and author information

Author details

  1. Manuela Richter

    Tetrad Graduate Program, University of California - San Francisco, San Francisco, United States
    For correspondence
    manuela.richter.bio@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Lila Neahring

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2272-8732
  3. Jinghui Tao

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Renaldo Sutanto

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1252-1482
  5. Nathan H Cho

    Tetrad Graduate Program, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0110-1343
  6. Sophie Dumont

    Department of Cell and Tissue Biology, University of California - San Francisco, San Francisco, United States
    For correspondence
    sophie.dumont@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1523

Funding

Achievement Rewards for College Scientists Foundation (Graduate Student Scholarship)

  • Manuela Richter

Hertz Foundation (Hertz Fellowship)

  • Lila Neahring

American Heart Association (Predoctoral Fellowship)

  • Nathan H Cho

University of California, San Francisco (Discovery Fellows Program)

  • Lila Neahring
  • Nathan H Cho

National Science Foundation (Graduate Research Fellowship Program)

  • Manuela Richter

University of California, San Francisco (PIBS Bishop Fellowship)

  • Manuela Richter

National Institutes of Health (NIHR35GM136420)

  • Sophie Dumont

National Science Foundation (NSF CAREER 1554139)

  • Sophie Dumont

National Science Foundation (NSF 1548297 Center for Cellular Construction)

  • Sophie Dumont

Chan Zuckerberg Initiative (Chan Zuckerberg Biohub)

  • Sophie Dumont

University of California, San Francisco (Byers Award)

  • Sophie Dumont

University of California, San Francisco (Program for Breakthrough Biomedical Research (PBBR))

  • Sophie Dumont

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Richter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 956
    views
  • 146
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.85208

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.