Kinetochore-fiber lengths are maintained locally but coordinated globally by poles in the mammalian spindle

  1. Manuela Richter  Is a corresponding author
  2. Lila Neahring
  3. Jinghui Tao
  4. Renaldo Sutanto
  5. Nathan H Cho
  6. Sophie Dumont  Is a corresponding author
  1. University of California - San Francisco, United States

Abstract

At each cell division, nanometer-scale components self-organize to build a micron-scale spindle. In mammalian spindles, microtubule bundles called kinetochore-fibers attach to chromosomes and focus into spindle poles. Despite evidence suggesting that poles can set spindle length, their role remains poorly understood. In fact, many species do not have spindle poles. Here, we probe the pole's contribution to mammalian spindle length, dynamics, and function by inhibiting dynein to generate spindles whose kinetochore-fibers do not focus into poles, yet maintain a metaphase steady-state length. We find that unfocused kinetochore-fibers have a mean length indistinguishable from control, but a broader length distribution, and reduced length coordination between sisters and neighbors. Further, we show that unfocused kinetochore-fibers, like control, can grow back to their steady-state length if acutely shortened by drug treatment or laser ablation: they recover their length by tuning their end dynamics, albeit slower due to their reduced baseline dynamics. Thus, kinetochore-fiber dynamics are regulated by their length, not just pole-focusing forces. Finally, we show that spindles with unfocused kinetochore-fibers can segregate chromosomes but fail to correctly do so. We propose that mammalian spindle length emerges locally from individual k-fibers while spindle poles globally coordinate k-fibers across space and time.

Data availability

We provide all source data and analyzed data for all figures. We provide source code for Figure 1.

Article and author information

Author details

  1. Manuela Richter

    Tetrad Graduate Program, University of California - San Francisco, San Francisco, United States
    For correspondence
    manuela.richter.bio@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Lila Neahring

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2272-8732
  3. Jinghui Tao

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Renaldo Sutanto

    Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1252-1482
  5. Nathan H Cho

    Tetrad Graduate Program, University of California - San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0110-1343
  6. Sophie Dumont

    Department of Cell and Tissue Biology, University of California - San Francisco, San Francisco, United States
    For correspondence
    sophie.dumont@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1523

Funding

Achievement Rewards for College Scientists Foundation (Graduate Student Scholarship)

  • Manuela Richter

Hertz Foundation (Hertz Fellowship)

  • Lila Neahring

American Heart Association (Predoctoral Fellowship)

  • Nathan H Cho

University of California, San Francisco (Discovery Fellows Program)

  • Lila Neahring
  • Nathan H Cho

National Science Foundation (Graduate Research Fellowship Program)

  • Manuela Richter

University of California, San Francisco (PIBS Bishop Fellowship)

  • Manuela Richter

National Institutes of Health (NIHR35GM136420)

  • Sophie Dumont

National Science Foundation (NSF CAREER 1554139)

  • Sophie Dumont

National Science Foundation (NSF 1548297 Center for Cellular Construction)

  • Sophie Dumont

Chan Zuckerberg Initiative (Chan Zuckerberg Biohub)

  • Sophie Dumont

University of California, San Francisco (Byers Award)

  • Sophie Dumont

University of California, San Francisco (Program for Breakthrough Biomedical Research (PBBR))

  • Sophie Dumont

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Richter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 962
    views
  • 146
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manuela Richter
  2. Lila Neahring
  3. Jinghui Tao
  4. Renaldo Sutanto
  5. Nathan H Cho
  6. Sophie Dumont
(2023)
Kinetochore-fiber lengths are maintained locally but coordinated globally by poles in the mammalian spindle
eLife 12:e85208.
https://doi.org/10.7554/eLife.85208

Share this article

https://doi.org/10.7554/eLife.85208

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.