Systems level identification of a matrisome-associated macrophage polarization state in multi-organ fibrosis

  1. John F Ouyang  Is a corresponding author
  2. Kunal Mishra
  3. Yi Xie
  4. Harry Park
  5. Kevin Y Huang
  6. Enrico Petretto  Is a corresponding author
  7. Jacques Behmoaras  Is a corresponding author
  1. SingHealth Duke-NUS Academic Medical Centre, Singapore

Abstract

Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1), associate with lung and liver fibrosis. However, the conservation of this SPP1+ macrophage population across different tissues, and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin and endometrium, we extended the association of SPP1+ macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarization state within SPP1+ macrophages. Importantly, the MAM polarization state follows a differentiation trajectory from SPP1+ macrophages and is associated with a core set of regulon activity. SPP1+ macrophages without the MAM polarization state (SPP1+MAM-) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarization state of SPP1+ macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.

Data availability

The current manuscript is a computational study where we meta-analyze previously published data. No new primary datasets have been generated in this manuscript.The code used in the study is publicly available at https://github.com/the-ouyang-lab/mam-reproducibility.See also MethodsThe processed Seurat object for each of the six tissues and SPP1 macrophages can be downloaded at https://zenodo.org/record/8266711 (See also Methods)DATA SET information: Details on previously published datasets are provided and described in Table 1 within the manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. John F Ouyang

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    For correspondence
    john.ouyang@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Kunal Mishra

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi Xie

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Harry Park

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Kevin Y Huang

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2288-3620
  6. Enrico Petretto

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    For correspondence
    enrico.petretto@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  7. Jacques Behmoaras

    Centre for Computational Biology, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    For correspondence
    jacquesb@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5170-2606

Funding

Ministry of Education - Singapore (T2EP30221-0013)

  • Enrico Petretto

Ministry of Education - Singapore (2022-MOET1-0003)

  • Jacques Behmoaras

National Medical Research Council (OFLCG22may-0011)

  • Enrico Petretto
  • Jacques Behmoaras

National Medical Research Council (MOH-OFYIRG21nov-0004)

  • John F Ouyang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ouyang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,532
    views
  • 417
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John F Ouyang
  2. Kunal Mishra
  3. Yi Xie
  4. Harry Park
  5. Kevin Y Huang
  6. Enrico Petretto
  7. Jacques Behmoaras
(2023)
Systems level identification of a matrisome-associated macrophage polarization state in multi-organ fibrosis
eLife 12:e85530.
https://doi.org/10.7554/eLife.85530

Share this article

https://doi.org/10.7554/eLife.85530

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.