Actin networks modulate heterogenous NF-κB dynamics in response to TNFα

  1. Francesca Butera  Is a corresponding author
  2. Julia E Sero
  3. Lucas G Dent  Is a corresponding author
  4. Chris Bakal  Is a corresponding author
  1. Institute of Cancer Research, United Kingdom
  2. University of Bath, United Kingdom

Abstract

The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

Data availability

All data generated for this study have been included as source data files.

Article and author information

Author details

  1. Francesca Butera

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    frankie.butera@mcri.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6606-4678
  2. Julia E Sero

    Biology and Biochemistry Department, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas G Dent

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    lucas.dent@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8573-4617
  4. Chris Bakal

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    cbakal@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0413-6744

Funding

Cancer Research UK (S_3567)

  • Francesca Butera

Cancer Research UK supported by Stand Up to Cancer UK (C37275)

  • Chris Bakal

Cancer Research UK supported by Stand Up to Cancer UK (A20146)

  • Chris Bakal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Butera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 691
    views
  • 109
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Butera
  2. Julia E Sero
  3. Lucas G Dent
  4. Chris Bakal
(2024)
Actin networks modulate heterogenous NF-κB dynamics in response to TNFα
eLife 13:e86042.
https://doi.org/10.7554/eLife.86042

Share this article

https://doi.org/10.7554/eLife.86042

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Susanne Tilk, Judith Frydman ... Dmitri A Petrov
    Research Article

    In asexual populations that don’t undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.